Wide vs. Narrow Frontal Crashes: Do Injury Patterns Differ?

Presenters:
Gail T. Tominaga, MD, FACS (Co-PI)
Steve Erwin (Crash Investigator)

September 2006
Presentation Objectives

- Discuss differences between wide and narrow impacts
- Present examples of wide and narrow impacts investigated by San Diego CIREN
- Compare injury experience of occupants in wide vs. narrow impacts using CIREN database
- Discuss implications for injury prevention comparing wide vs. narrow impacts
Why Study Wide vs. Narrow Impacts Using CIREN Data?

- NHTSA frontal crash test: “head on” into fixed barrier to assess safety system effectiveness
 - Not tested on narrow impacts
- Delta T differs for wide and narrow impacts
- Real world experience provides information on safety system effectiveness during narrow impacts
Definitions

◆ Narrow impact
 - 6th column of CDC=“N”
 - Damage distribution across frontal plane < 41 cm

◆ Wide impact
 - 6th column of CDC=“W” and 4th column of CDC=“D”
 - Wide damage distribution across 66% of frontal plane
Deceleration pulses

Wide vs. Narrow Impacts (Delta V / Delta T)

Wide impact (evenly distributed force)
- Significant speed change begins immediately

Narrow impact (focalized force)
- Significant speed change is delayed until enough resistance is built up

Delta V (velocity change)

@ 50ms

35 mph
This case involves a belted, male driver responding to a frontal (this vehicle) collision with the back of a slow moving, heavy truck.
Driver – sole occupant

21yo male, 6’2”, 205 lbs

Pretensioner equipped belt used, frontal impact air bag(s) deployment. Bucket seat between mid & rear, slightly reclined. Cushion twisted to right, seat back twisted to left due to remote buckling

- Mesenteric arterial avulsion
- Small bowel avulsion
- Sigmoid colon “degloving” injury
- Left testicular artery and vein laceration
- Right rectus muscle partial transection

12:00 PDOF
Crash: 1 event

- Frontal to Vehicle – Back plane full end plane impact

- Case vehicle

 2003 Mitsubishi Lancer
 4-door sedan, 2697 lbs.
 12:00 PDOF (Zero-degrees)
 54 kmph BES **DV (34 mph)**

- Opposing vehicle (V2)

 2003 Peterbilt 3-axle “cement truck” nfs.
 Heavy Truck, full load, > 10,000 lbs GVWR

- 6:40 am, Saturday, cloudy, dry, daylight
2002 Mitsubishi Lancer / 54 cm Max. crush / 34 mph DV / 12:00 PDOF
Direction of travel

POI
Transfer on bag (skin?)

Sheared completely
Contact: lower dash/bolster, belt, air bag, steering assembly
Wide Impact CIREN Case

Right lower abdominal abrasion Left lower abdominal abrasion
Toe pan intrusion 5 cm
Wide Impact CIREN Case

- 21 year old male, 6’2”, 205 lbs
- MAIS 4, ISS 17
- Ground transport to ED with complaint of pain
- US and DPL positive → OR ½ hour after arrival
- Multiple operative procedures
 - Exploratory laparotomy, repair of partial transection of right rectus muscle
 - Ligation of mesenteric arterial bleeds, left testicular artery, and left testicular vein
 - Small bowel resection with primary anastomosis
 - Sigmoid colon resection with primary anastomosis
Wide Impact Case: Injury Sources

- Abdomen
 - AIS 3-4 Major lac of arteries and veins (safety belt)
 - AIS 4 Massive (OIS Grade IV/V) jejunum-ileum lac (safety belt)
 - AIS 4 Massive (OIS Grade IV/V) colon laceration (safety belt)
 - AIS 1 Contusions and abrasions
This case involves a belted driver responding to a narrow frontal impact into a rigid object with frontal impact air bag deployment.

Subject – Driver
1996 Nissan Sentra
Crash: 1 event

- Narrow front to rigid object
 30cm steel, non-breakaway utility pole, not damaged
- Case vehicle
 1996 Nissan Sentra
 4-door sedan, 2315 lbs., 100” wheelbase
 12 o’clock PDOF
 WinSmash dV = 66 mph
- 1:54 am, Saturday, clear, dry dark-street lights
Subject – Driver (sole occupant)

30-year-old male, 5’10”, 200 lbs. Belt used, frontal impact air bag(s) deployed.

- R - internal pudenal artery laceration
- R - acetabulum fracture
- R - posterior tibial artery and vein transection
- R - fibula mid shaft fracture, nondisplaced, minimal angulation
- Multiple R - foot fractures and soft tissue injury
- Concussion w/ LOC < 1 hour (CT negative)
- L - extensive diastasis sacroiliac joint and pubic symphysis w/ retroperitoneal hematoma
- L - iliolumbar artery laceration
- L - distal tibia/fibula
- L - medial malleolus
- L - calcaneous fracture
- L - hand laceration w/ extensor tendon lacerations
1996 Nissan Sentra / Max. crush = 135 cm / 12:00
PDOF / 66mph dV (stvz 45mph)
Left: dash (32), toe pan (86), steering assembly (31), A-pillar, floor pan (15) intrusion.
Contacts:
knee bolster (L & R),
steering assembly,
belt, floorboard
(pedals)
Right Foot
Left medial malleolus fracture
Right Calcaneous Fracture
L - Sacroiliac Joint Diastasis
Narrow Impact CIREN Case

- 30 year old male, 5’11”, 201 lb, MAIS 4, ISS 34
- 45 minute extrication ⇒ helicopter transportation
- Multiple operative procedures
 - Pelvic angioembolization: gelfoam embolism R-internal pudenal artery, coil embolism L-iliolumbar branches
 - Exploratory laparotomy
 - ORIF symphysis pubis
 - Irrigation & debridement w/splinting open heel injury
 - Vascular grafting L-tibial artery transection
 - External fixation R-foot and ankle
 - Irrigation & debridement L-hand w/repair of 3rd & 4th digit extensor tendons
 - Closed reduction L-pilon fracture w/ internal and external fixation
 - Closed reduction, percutaneous screw fixation L-sacroiliac joint dislocation
- Hospital length of stay 24 days, discharged to extended care facility
Narrow Impact Case: Injury Sources

◆ Head
 ➢ AIS 2 LOC < 1 hour (Air bag)

◆ Upper extremity
 ➢ AIS 1 Multiple hand tendon lacerations (IP)

◆ Abdomen
 ➢ AIS 4 Major laceration iliac artery (Steering wheel)
 ➢ AIS 3 Minor laceration other named arteries (IP)

◆ Lower extremities
 ➢ AIS 3 Skin laceration w/ blood loss >20% volume (IP)
 ➢ AIS 3 Symphysis pubis diastasis (Floor/toe pan)
 ➢ AIS 3 Open, displaced, comminuted tibia shaft fx (Floor/toe pan)
 ➢ AIS 3 Laceration arteries/veins (IP)
 ➢ AIS 2 Closed pelvic fractures (Floor/toe pan)
 ➢ AIS 2 Calcaneal fracture (Floor/toe pan)
 ➢ AIS 2 Talus, Metatarsal/Tarsal fracture and traumatic arthrotomy (Floor/toe pan)
 ➢ AIS 2 Fibula fracture (head/neck/shaft) (Floor/toe pan)
 ➢ AIS 2 Medial malleolus tibia fracture (IP)
CIREN Database

Used to compare injury patterns for wide vs. narrow impacts

- Regions injured
- Within regions, compare severity and sources
- Specific injuries for selected regions
Study Criteria

- Frontal impact
 - PDOF=12 o’clock and GAD=F
 - Ranked #1 impact by Crash Investigator
 - Wide: damage distribution $\geq 66\%$ of frontal plane
 - Narrow: damage distribution < 41 cm
Study Criteria

◆ Inclusion criteria
 ➢ Safety belt use
 ➢ Frontal air bag deployment during impact
 ➢ AIS ≥ 2 injury severity

◆ Exclusions criteria
 ➢ Children (<13 yrs)
 ➢ Passengers
 ➢ Open cases
CIREN Cases

- **Wide Impacts**: $N = 141$
 - Mean age = 43, Median age = 41 (range: 16-80 yrs)
 - Mean ISS = 19, Median ISS = 14 (range: 5-75)
 - Mean delta V = 49, Median = 47 (range: 14-92 kmph)

- **Narrow Impacts**: $N = 35$
 - Mean age = 46, Median age = 47 (range: 17-86 yrs)
 - Mean ISS = 17, Median = 14 (range: 5-43)
 - Mean Delta V = 52, Median = 47 (range: 22-113 kmph)
WIDE vs. NARROW FRONTAL CRASHES

Injury Severity by Body Region

![Chart showing injury severity by body region for wide and narrow crashes.]

- **Head**
 - AIS 6: 0%
 - AIS 5: 10%
 - AIS 4: 20%
 - AIS 3: 30%
 - AIS 2: 50%

- **Spine**
 - AIS 6: 0%
 - AIS 5: 20%
 - AIS 4: 30%
 - AIS 3: 50%
 - AIS 2: 60%

- **Thorax**
 - AIS 6: 0%
 - AIS 5: 20%
 - AIS 4: 30%
 - AIS 3: 50%
 - AIS 2: 60%

- **Abdomen**
 - AIS 6: 0%
 - AIS 5: 20%
 - AIS 4: 30%
 - AIS 3: 50%
 - AIS 2: 60%
WIDE vs. NARROW FRONTAL CRASHES

Injury Sources

Body Region

- Head
- Spine
- Thorax
- Abdomen

Percentage of Injuries

- Other
- Non-contact
- Interior
- Inst Panel
- Air Bag
- Steering Wheel
- Safety Belt
WIDE vs. NARROW FRONTAL CRASHES

Injury Patterns

◆ Head
◆ Thorax
◆ Abdomen*
 ➢ Wide impact ➔ Solid organ injury
 ➢ Narrow impact ➔ Hollow viscus injury
Source of Injuries

Wide Impact Injury Sources

Narrow Impact Injury Sources
WIDE vs. NARROW FRONTAL CRASHES

Differences in Abdominal Injury

<table>
<thead>
<tr>
<th></th>
<th>Wide</th>
<th>Narrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal injury</td>
<td>Solid organ</td>
<td>Hollow viscus</td>
</tr>
<tr>
<td>Seatbelt use & air bags</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Age (years)</td>
<td>Mean 43, Median 41</td>
<td>Mean 46, Median 37</td>
</tr>
<tr>
<td>ISS</td>
<td>Mean 19, Median 14</td>
<td>Mean 17, Median 14</td>
</tr>
<tr>
<td>Death</td>
<td>11%</td>
<td>3%</td>
</tr>
<tr>
<td>Type of Auto = Car</td>
<td>77%</td>
<td>74%</td>
</tr>
<tr>
<td>Object hit</td>
<td>78% moving auto</td>
<td>89% pole or tree</td>
</tr>
<tr>
<td>Delta T</td>
<td>Evenly distributed</td>
<td>Focalized</td>
</tr>
</tbody>
</table>
Summary

- Different injury patterns observed for some regions
 - Wide impacts have more head and upper extremity injuries
 - Narrow impacts have more abdomen and thoracic injuries
 - Wide impacts have more solid organ abdominal injuries compared to narrow impacts with more hollow viscus injuries

- Wide impacts result in greater injury severity for each region except the abdomen

- Different patterns of injury sources observed for some regions comparing wide vs. narrow impacts
 - Implications for vehicle and safety system design to prevent injury

- Needs further study as more CIREN cases become available
San Diego CIREN Team

Principal Investigators
Raul Coimbra, MD, FACS (UCDS)
Gail T. Tominaga, MD, FACS (Scripps Memorial La Jolla)

Team
Sharon Pacyna, RN, BSN, MPH
Steve Erwin
Carol Conroy, MPH, PhD
MarSue May, RN, BSN
Barbara Frasier