# LIVES SAVED BY VEHICLE SAFETY TECHNOLOGIES 1960 TO 2012

Work by Charles J. Kahane, Ph.D. National Highway Traffic Safety Administration (retired) Presenter: John Kindelberger National Highway Traffic Safety Administration



This is a U.S. Government work and may be copied and distributed without permission.



## Objectives

#### **Preview of forthcoming NHTSA technical report:**

- Lives Saved by Vehicle Safety Technologies and Associated Federal Motor Vehicle Safety Standards, 1960 to 2012
  - Passenger Cars and LTVs
  - With Reviews of 26 FMVSS and the Effectiveness of Their Associated Safety Technologies in Reducing Fatalities, Injuries, and Crashes
- Charles J. Kahane, Ph.D.

## Objectives

# Estimate numbers of lives saved by all vehicle safety technologies from 1960 to 2012, cars and LTVs

- Using effectiveness estimates for individual technologies based on statistical analyses of crash data
  - Lives saved by each technology
  - Lives saved in each calendar year

#### Simplified example -

#### consider three live-saving technologies:

| Chronology | Technology               | Results of statistical analysis     |
|------------|--------------------------|-------------------------------------|
| 1          | Energy-absorbing         | Energy-absorbing steering           |
|            | steering assemblies      | columns found to reduce fatality    |
|            | introduced in 1967-68    | risk of unbelted drivers by 12.1%   |
|            |                          |                                     |
| 2          | 3-point belts introduced | 3-point belts found to reduce       |
|            | in 1970s, belt use laws  | fatality risk by 42% for drivers in |
|            | in 1980s                 | cars equipped with EA columns       |
|            |                          |                                     |
| 3          | Frontal air bags         | Frontal air bags found to reduce    |
|            | introduced in 1990s      | fatality risk of belted drivers by  |
|            |                          | 25.3% in cars with EA steering      |
|            |                          | columns                             |

#### Continuing the simplified example –

#### Now consider those three live-saving technologies:

- Suppose we had 1000 driver fatalities in pre-1966 cars in frontal crashes.
- How many of those 1000 drivers would be saved if we added these technologies?

## Method: One Step at a Time

#### **Continuing the Simplified Example:**

| (Chronology)<br>Technology | From our statistical analyses | Consider 1000 driver fatalities in pre-1966 cars in frontal crashes: |
|----------------------------|-------------------------------|----------------------------------------------------------------------|
| (1)                        | Reduce fatality risk of       | Would drop to 879 with EA steering                                   |
| Energy-absorbing           | unbelted drivers by           | columns                                                              |
| steering assemblies        | 12.1%                         |                                                                      |
| introduced in 1967-68      |                               | (1000 x [1121]) = 879                                                |
|                            |                               | Lives Saved = 1000 – 879 = 121                                       |
| (2)                        | Reduce fatality risk by       | Drop to 510 if drivers also buckled 3-point                          |
| 3-point belts              | 42% in cars equipped          | belts                                                                |
| introduced in 1970s,       | with EA columns               |                                                                      |
| belt use laws in 1980s     |                               | (879 x [1420]) = 510                                                 |
|                            |                               | Lives Saved = 879 – 510 = 369                                        |
| (3)                        | Reduce fatality risk of       | Drop to 381 if cars also had frontal air                             |
| Frontal air bags           | belted drivers by 25.3%       | bags                                                                 |
| introduced in 1990s        | in cars with EA steering      |                                                                      |
|                            | columns                       | (510 x [1253]) = 510                                                 |
|                            |                               | Lives Saved = 510 – 381 = 129                                        |

SAE INTERNATIONAL

## In reverse, consider 381 FARS cases: Driver fatalities in post-1997 cars in frontal crashes If we "remove" technologies, newest first:

- Without air bags, 381 becomes 510 (381/[1-.253])
- With buckled belts, 510 becomes 879 (510/[1-.420])
- Without EA columns, 879 becomes 1000 (879/[1-.121])
  - 1000 potential fatalities if air bags, belts, and EA columns had been "removed"
- We surmise there were 1000-381=619 drivers in crashes (not on FARS) where these technologies saved the driver
- Allocation:
  - 129 saved by air bags (510-381)
  - **369 by 3-point belts** (879-510)
  - **121 by EA columns.** (1000-879)

#### The Model Includes:

## Safety Technologies that Significantly Reduce Fatality Risk for Car/LTV Occupants

- Seat belts: various types and seating positions
- Air bags: frontal, side, and curtain
- Energy-absorbing steering assemblies
- Child safety seats
- Electronic stability control
- Roof crush resistance
- Fuel system integrity
- Others

#### The model includes:

- Occupants of cars and LTVs
- Peds/bicylists/motorcyclists saved by car/LTV crash avoidance technologies
- Technologies compliant with FMVSS in effect
- Technologies not required by FMVSS
  - e.g., belt pretensioners and load limiters
- Effect of programs to increase use of seat belts and child safety seats

#### The model does not include:

- Behavioral safety (other than programs to increase restraint use)
  - e.g., programs to reduce drunk driving
- Technologies not involving or benefiting cars and LTVs
  - e.g., motorcycle helmets
- Effect of EMS improvements

#### Actual versus Potential Car/LTV Occupant Fatalities, 1960 to 2012



#### **Previous estimates of lives saved:**

Earlier report using "Lives Saved" model (NHTSA, DOT HS 809 833, Kahane, 2004)

• Estimated 328,551 lives saved 1960-2002

#### The new report updates through 2012:

• Breaks out specific numbers by technologies contributing

## Forthcoming Report

#### Additional topics in report include:

- Summary and effectiveness findings of NHTSA evaluations
- Actual versus Potential Car/LTV Occupant Fatalities, 1960 to 2012
- Different options for methodologies
  - Indirect vs. direct effects
- Vehicular Risk Index
  - (actual fatalities)  $\div$  (potential fatalities w/o safety technologies)
- Car/LTV Fatalities per Vehicle Miles Traveled
- Assessing improvements not included in calculations
- Comparison to premature deaths from disease

## Forthcoming Report

#### **NHTSA Technical Report**

- Lives Saved by Vehicle Safety Technologies and Associated Federal Motor Vehicle Safety Standards, 1960 to 2012
  - Passenger Cars and LTVs
  - With Reviews of 26 FMVSS and the Effectiveness of Their Associated Safety Technologies in Reducing Fatalities, Injuries, and Crashes
- Charles J. Kahane, Ph.D.
- Report No. DOT HS 812 069
- Planned release early 2015

## Thank You

#### For further information please contact:

- John Kindelberger
- john.kindelberger@dot.gov
- 202-366-4696

This is a U.S. Government work and may be copied and distributed without permission.