EPIDEMIOLOGICAL ANALYSIS OF FARSIDE CRASHES FROM RECENT NASSCDS DATABASES

John Humm, Dale Halloway, Clare Guse, Narayan Yoganandan, Hans Hauschild, Frank Pintar

Medical College of Wisconsin

Far Side Review

1991 - Mackay

- UK $\rightarrow 193$ far-side crashes
- Head, abdominal, and thoracic injuries

1998/99 - Frampton

- Study examined influence of other occupants
- Injury influenced by angle and intrusion
- Head most injured

2000 - Augenstein

- Head injuries-> Higher severity
- Chest \& abdomen \rightarrow Lower severity

2005 - Gabler

- Head \& chest most injured
- DeltaV and damage extent \rightarrow injuries
- > 24 km/h

2006 - Pintar

- Matched paired PMHS, WorldSID and THOR sled tests

2010 - Fildes \& Digges

- Passenger Vehicles Occupants-> Chest and head injuries

Near Side V. Far Side

Near Side

Far Side

- US NASS-CDS database
- 2000-2013
- Model Years 2000-2013

- Outboard, adult far-side front seat occupants
- Impact to opposite side of occupant
- Rollovers and ejected occupants excluded.
$\rightarrow 2 \mathrm{M}$ weighted cases

"Oblique" crash test

"Oblique" crash test

SAE INTERNATIONAL

Occupant injury numbers

Age/Height/Gender

Gender

Vehicle type

Vehicle Type

Seat location

Occupant Location

DeltaV

DeltaV

BMI

BMI

Contact location

- 1995 - Patent issued - center air bag deploys from roof
- 1996 - Patent issued - air bag at inboard side of seat
- 2011 - GM announces " first front center air bag"
- 2013 - GM crossover models offer center airbag

Injured Body Region

Intrusion (Occupant Space)

Data subsets

$1^{\text {st }}$ subset

- Removed 6 and 12 o'clock impacts
- 1.7 M weighted cases
$2^{\text {nd }}$ subset
- Limited to 2-3 and 9-10 o'clock
- 1.0 M weighted cases

Similar numbers

Conclusions

- Broad/general search \rightarrow ~ 2 M Far-Side impacts 2000-2013
- Driver position \rightarrow 73\% crashes
- Occupant in driver position
- Passenger vehicle \rightarrow 63\% crashes; Truck/SUV 33\%
- Passenger vehicle 1.6 times more likely MAIS 2+
- 2 times MAIS 3+
- Interior occupant environment
- 58\% Occupants either Normal or Overweight
- 50% male good model for preliminary analysis
- DeltaV
- 24-40 kmph impacts ~ 5 times more likely MAIS 2+ than <24 kmph
- Target range for experiments

Conclusion

- Intrusion
- 15-60 cm 40-50\% MAIS 2+ , 30-40\% 3+
- Starting point for placement of vehicle structures
- Injured body location
- Head injuries \rightarrow impact
- Injury location in vehicle
- Opposite sides structures

Next steps in current effort

- Link injuries to injury sources in vehicle
- On-going parametric studies with GHBMC
- Design sled test series

Acknowledgements

This work was supported by NHTSA DTNH22-13-D00290 and the VA Medical Center

