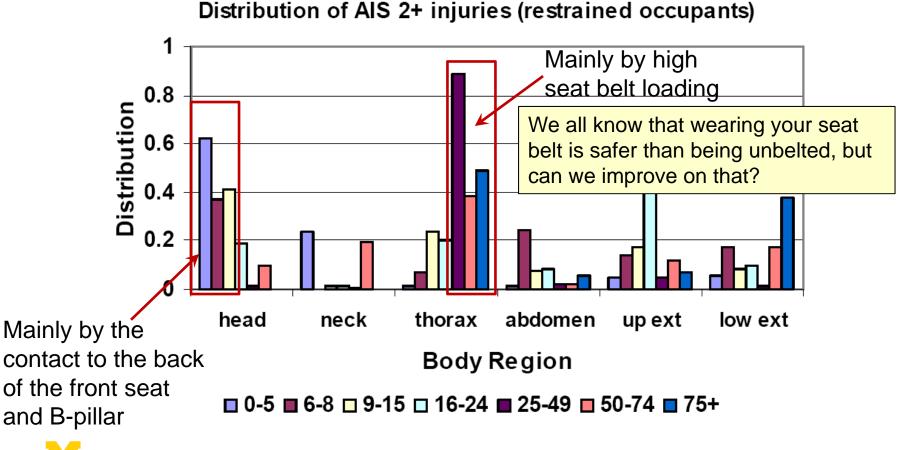
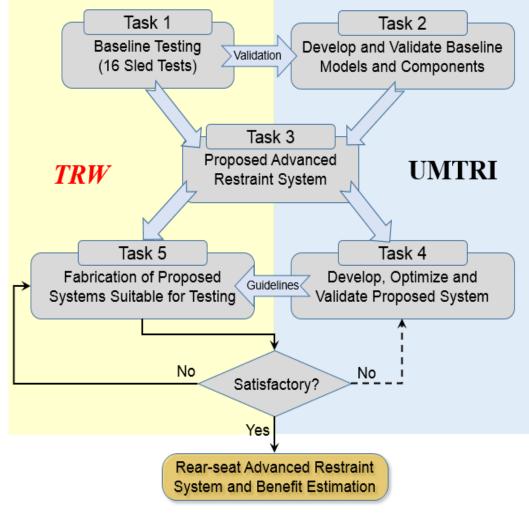
Rear Seat Occupant Protection: Safety Beyond Seat Belts


Presented @ 2015 SAE Government/Industry Meeting January 21, 2015

UNIVERSITY OF MICHIGAN TRANSPORTATION RESEARCH INSTITUTE

Background

What are the leading injuries in rear seat?

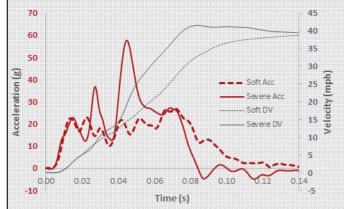


UMTRI Data based on Kuppa et al. 2005 and Arbogast et al. 2012

Research Objective & Tasks

Objective:

 To design, optimize, and fabricate prototype advanced restraint systems to provide protection for rear seat occupants of different sizes in frontal crashes with different crash pulses and directions



Crash Conditions

- Rear seat compartment
 - Based on a compact vehicle
- Crash pulse
 - NCAP fleet severe vs. NCAP fleet soft
- Crash angle
 - 0 deg vs. 15 deg to the right
- ATD Occupants
 - H-III 6YO / H-III 5th / THOR 50th / H-III 95th
- Front seat position
 - Mid (left) vs. more forward (right)

Front Seat Position

	Dri	ver	Passenger		
	Seat Back AngleSeat Position (Knee/Seat Offset)		Seat Back Angle	Knee/Seat Offset	
6 Year Old	12 deg	Mid	3 deg	150 mm	
Small Female (5 th)	12 deg	Mid (110 mm)	3 deg	150 mm (Mid seat track)	
Mid Size Male (50 th)	12 deg	Mid (70 mm)	3 deg	150 mm	
Large Male (95 th)	12 deg	2 notches FWD of MID (20 mm)	3 deg	150 mm (Approx full fwd)	

Objective & Constraints

Objective Function

 Chest injury probability for 5th, THOR, and 95th (based on chestD and associated injury risk curves for different sizes of ATDs)

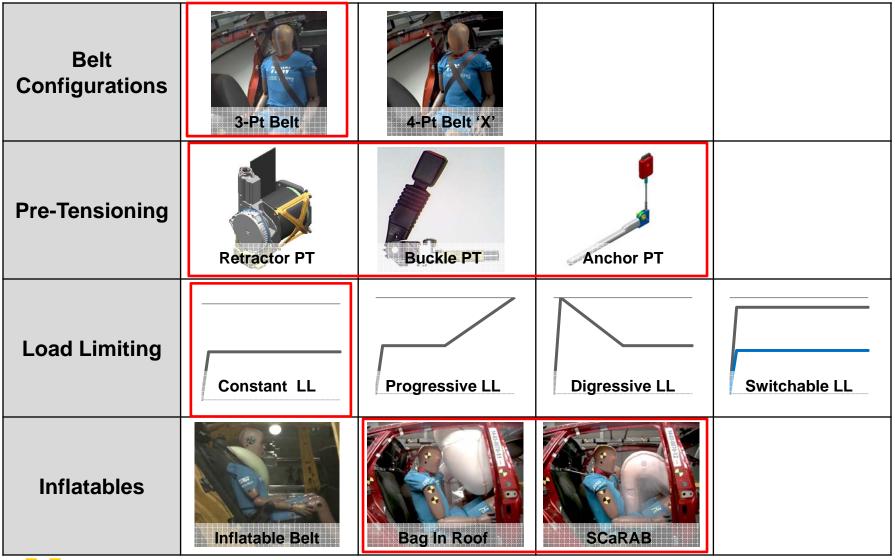
Constraints

- Head: Head excursion, HIC, and BrIC
- Neck: Neck C&T, NIJ
- Chest: 6YO chestD

Design Targets

	ł	lead			Chest		
	Excursion (mm)	HIC	BrIC	Neck T (kN)	Neck C (kN)	Nij	Chest D
6 Year Old	<480	<700	<0.87	<1.49	<1.82	<1.0	<40 mm
5th	<500	<700	<0.87	<2.62	<2.52	<1.0	Minimize
THOR	<580	<700	<0.87	<4.17	<4.00	<1.0	Minimize
95th	<600	<700	<0.87	<5.44	<5.44	<1.0	Minimize
Combined Probability of Chest Injury for 5 th , THOR, & 95 th							Minimize

*All injury measures should be less than those in the baseline tests


Baseline Test Summary

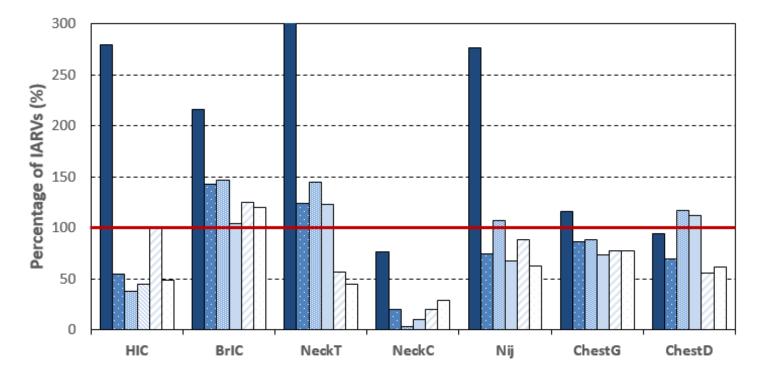
- Crash pulse and occupant size are the two dominating factors affecting the rear-seated ATD kinematics and injury measurements.
- Most injury measures are over the IARVs, especially under the severe pulse.
- Submarining was observed in most tests with 6YO, 5th, and THOR.
- No head-to-front-seat contact occurred in any of the tests.

Restraint Technology Review

Self Conforming Rearseat Air Bag - SCaRAB

Concept Description

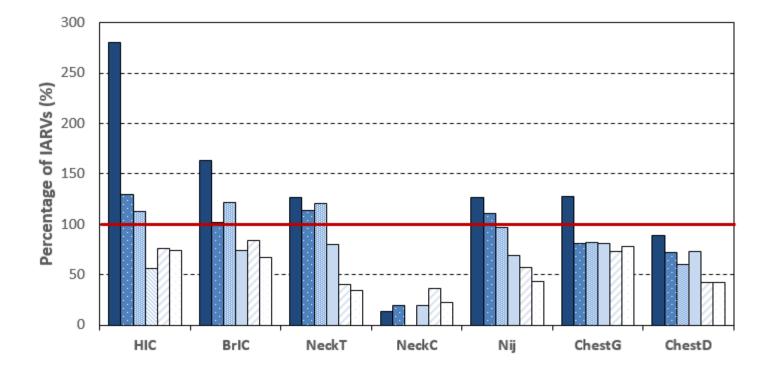
- Low energy air bag: DI10.1G36/46 Driver inflator
- Small Bag Volume: 40-60 liters
- Conforms to various front seat positions (enabled by open space)
- Moves laterally minimizing head rotation
- Mounted in the roof or front seat back (door mounting also possible)
- Primary reaction surface is seat back regardless of mounting location.


Sled Tests with 6YO - Videos

Sled Tests with 6YO – Injury Measures

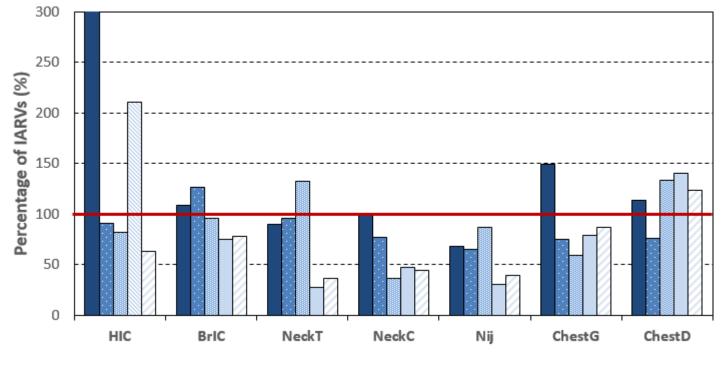
■ 3-pt belt - baseline ■ 3-pt belt - PT+LL ■ Inflatable belt ■ 4-pt belt □ BiR □ SCaRAB

The 3-pt baseline belt condition was without booster, and other conditions were with booster

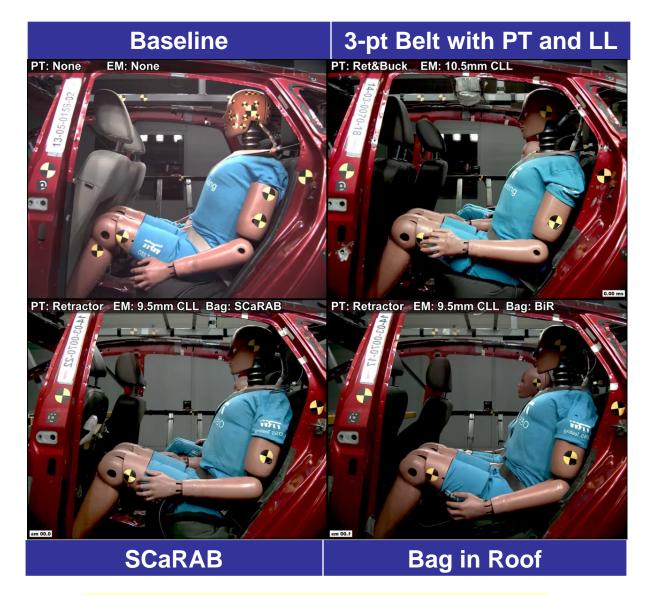

Sled Tests with 5th - Videos

Sled Tests with 5th – Injury Measures

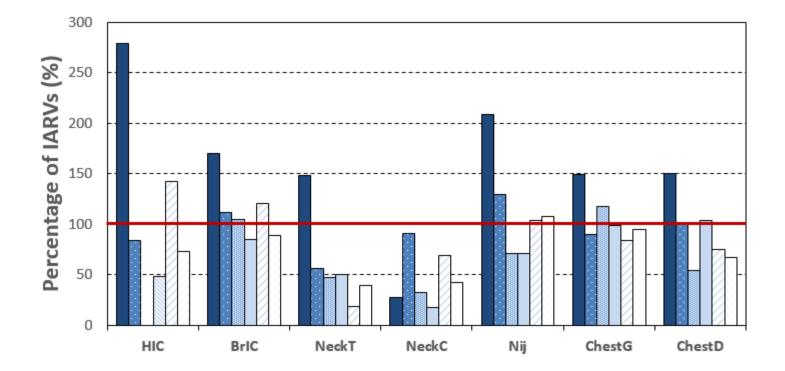
■ 3-pt belt - baseline ■ 3-pt belt - PT+LL ■ Inflatable belt ■ 4-pt belt □ BiR □ SCaRAB


Sled Tests with THOR - Videos

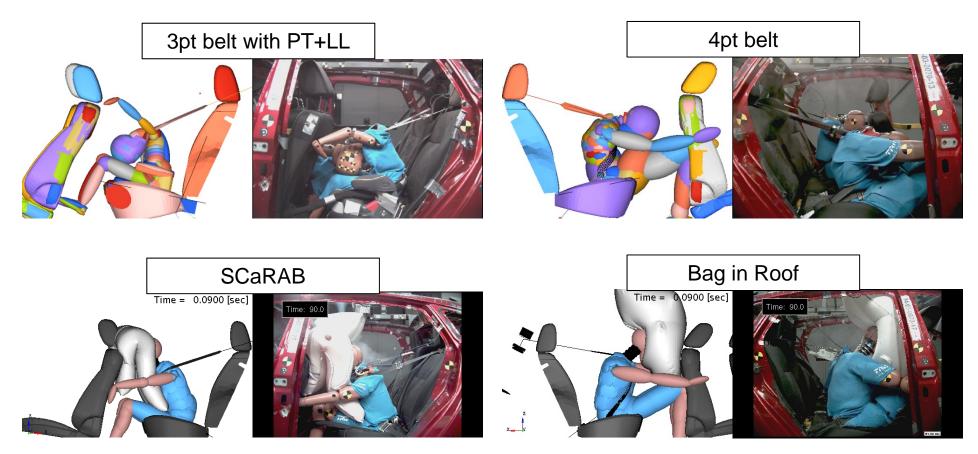
Sled Tests with THOR – Injury Measures



■ 3-pt belt ■ 3-pt belt - PT+LL ■ 4-pt belt ■ BiR ■ SCaRAB


Sled Tests with 95th - Videos

Sled Tests with 95th – Injury Measures


■ 3-pt belt - baseline ■ 3-pt belt - PT+LL ■ Inflatable belt ■ 4-pt belt □ BiR □ SCaRAB

Model Validation

- Hundreds of simulations have been run.
- Generally, good correlations have been achieved for each ATD with each advanced restraint system.

3-Point Belt DoE - CLL

• Baseline System

- Retractor Pre-tensioner
- Constant Load Limiter (CLL)

Factors

- Additional Pre-tensioners: Anchor and/or Buckle
- Load Limiter Levels: 8 to 10.5 mm torsion bar
- Dynamic Locking Tongue (DLT)

• Observations (768 simulations)

- Severe Pulse None met the constraints
- Soft Pulse 10 % (QTY 5) met the constraints

Pulse	буо	5th	THOR	95th	Comb			
Severe	0%	13%	0%	2%	0%			
Soft	27%	75%	63%	67%	10%			

Constraints Matrix

3-Point Belt DoE

Breakdown of Soft Pulse Configurations (CLL)

Run No	Anchor PT	Buckle PT	DLT	Pulse	Туре	Load Limiter Levels	Comb Chest Probability	System Costs
26	Yes	Yes	Yes	Soft	Frontal	9	10%	285%
122	No	Yes	Yes	Soft	Frontal	9	13%	206%
98	No	Yes	No	Soft	Frontal	9	14%	190%
123	No	Yes	Yes	Soft	Frontal	9.5	15%	206%
99	No	Yes	No	Soft	Frontal	9.5	20%	190%

System Cost based on material cost above current material cost of a rear seat system - standard retractor & buckle

Airbag DoE – Adv Features

Baseline System

- Retractor Pre-tensioner
- Constant Load Limiter

• Factors

- Advanced Feature: SCaRAB or BiR
- Additional Pre-tensioners: Anchor / Buckle
- Load Limiter Levels: 8 to 9 mm torsion bar
- Dynamic Locking Tongue (DLT)

• Observations (384 simulations)

- 6 designs met all 4 occupants and left & right side constraints
- 12 designs met all but one of the 4 occupants and left & right side constraints

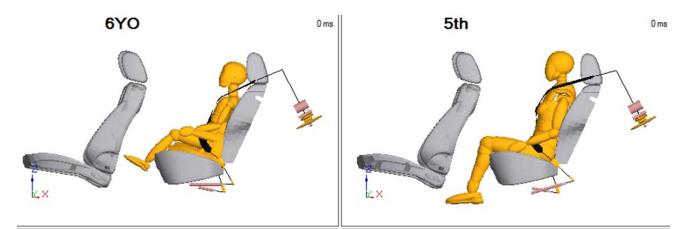
Constraints Matrix

Constraints Met	SCaRAB	BiR	
6уо	94%	58%	
5th	79%	98%	
THOR	58%	23%	
95th	88%	100%	

Airbag DoE Analysis

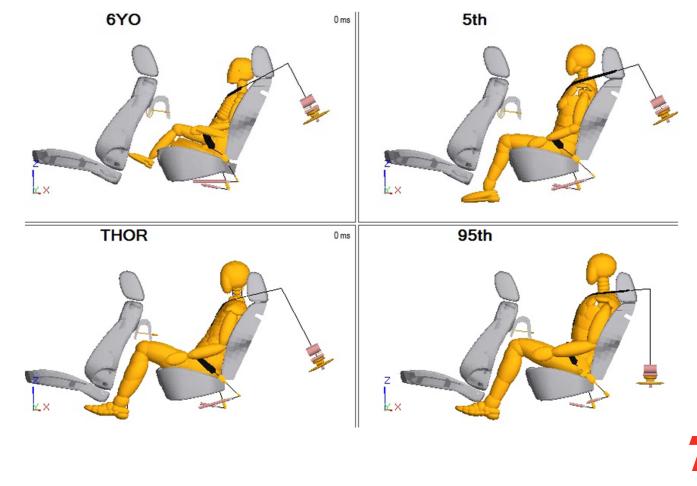
• Breakdown of Severe Pulse Configurations (with Advanced Features)

Run No	Advanced	Anchor PT	Buckle PT	DLT	Load Limiter Level	Constraints Met of 8	Comb Chest Probability	System Costs
56	SCaRAB	Yes	Yes	Yes	9	8	41.5%	520%
68	SCaRAB	Yes	No	Yes	9	8	44.4%	442%
55	SCaRAB	Yes	Yes	Yes	8.5	8	46.9%	520%
50	SCaRAB	Yes	Yes	No	9	8	48.5%	504%
62	SCaRAB	Yes	No	No	9	8	49.0%	426%
49	SCaRAB	Yes	Yes	No	8.5	8	50.7%	504%
104	BiR	Yes	Yes	Yes	9	7	44.8%	587%
79	SCaRAB	No	Yes	Yes	8.5	7	49.9%	442%
116	BiR	Yes	No	Yes	9	7	51.3%	508%
60	SCaRAB	Yes	No	No	8	7	52.9%	426%
67	SCaRAB	Yes	No	Yes	8.5	7	53.1%	442%
98	BiR	Yes	Yes	No	9	7	53.8%	570%
66	SCaRAB	Yes	No	Yes	8	7	53.9%	442%
61	SCaRAB	Yes	No	No	8.5	7	53.9%	426%
54	SCaRAB	Yes	Yes	Yes	8	7	54.4%	520%
110	BiR	Yes	No	No	9	7	57.2%	492%
48	SCaRAB	Yes	Yes	No	8	7	57.6%	504%
74	SCaRAB	No	Yes	No	9	7	60.7%	426%


System Cost based on material cost above current material cost of a rear seat system - standard retractor & buckle

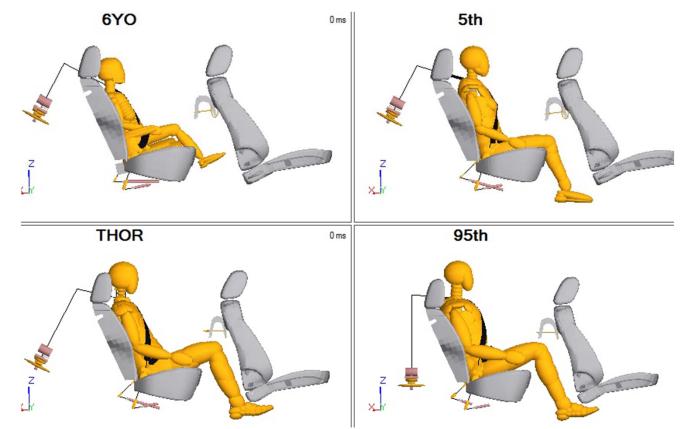
Recommendations – Soft Pulse

- Anchor PT / Buckle PT / 9mm TB / no airbag
 - Driver side / Passenger side


THOR Oms 95th Oms

Recommendations – Severe Pulse

- Anchor PT / Buckle PT / DLT / 9mm TB / SCaRAB
 - Driver side



Recommendations – Severe Pulse

- Anchor PT / Buckle PT / DLT / 9mm TB / SCaRAB
 - Passenger side

Summary

- Crash pulse and occupant size are the two dominating factors affecting the rear-seated ATD kinematics and injury measurements.
- Advanced seatbelt features, including pre-tensioner and load limiter, have the potential to help provide additional protection for rear-seat occupants with diverse occupant sizes. However, direct conflict exists between head excursion and chest deflection.
- Airbag concepts, including BiR and SCaRAB, have the potential to allow further reduction of seat belt load limit without resulting in a hard head contact to the front seat, when compared to 3-point seatbelt only designs.

This analysis only represents a compact vehicle, and does not represent the whole vehicle fleet.

Acknowledgements

National Highway Traffic Safety Administration

Funding support

TASS International

MADYMO ATD model support

Technical support

Thanks! Questions?

Jingwen Hu, PhD jwhu@umich.edu

UNIVERSITY OF MICHIGAN TRANSPORTATION RESEARCH INSTITUTE

