Development of an Automated Wheelchair Tiedown and Occupant Restraint System: Initial Progress

Kathleen Klinich, Jingwen Hu, Miriam Manary, Kyle Boyle, Nichole Orton, Yushi Wang, Laura Malik, Brian Eby

January 11, 2021
Wheelchair Transportation Safety (WTS)*

- Best practice recommendation is to transfer from a wheelchair to a vehicle seat
- Wheelchairs used as motor vehicle seats should be crash tested to verify performance.
- Method to secure the wheelchair to the vehicle. (wheelchair tiedown)
- Method to restrain the occupant.
- Wheelchair Tiedowns and Occupant Restraint Systems (WTORS)
- Goal of equal level of safety for those who remain seated in wheelchairs.

Current WTORS Systems

<table>
<thead>
<tr>
<th>WTORS Type</th>
<th>Independent Use</th>
<th>Protection in High g and Low g crashes</th>
<th>Any combination of wheelchair and vehicle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-pt strap tiedown paired with seatbelt</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Docking station paired with seatbelt</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Rear-facing stations</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Universal Docking Interface Geometry

• Common geometry for the connection interface between wheelchairs and vehicles. Based on the idea of truck trailer hitch.
• Allows a wheelchair to use docking in all types of vehicles.
• Geometry defined and field tested.
• Requires both WC and WTORS manufacturers to work together.
• Already implemented in standards, but no commercial use yet.
Project Goals and Tasks

- Develop an automated wheelchair docking station that would allow safe, independent docking of occupants seated in wheelchairs
- Develop an automated belt-donning system
- Evaluate in front and side impacts

- Computational Modeling
- Volunteer Usability Assessment
- Sled Testing
Frontal model validation: surrogate wheelchair fixture
Side impact validation tests

Test conditions based on proposed 213 NPRM conditions
Side model validation

Time = 0.000000
Frontal optimization parameter ranges
Optimum lap belt anchorage zones

Second row

Front row
SCARAB airbag

- Airbag provides benefit for suboptimal geometry
- Providing sufficient space to maneuver wheelchair may reduce potential for head contact
Side impact optimization

Airbag On & Off (Nearside Only)

D-Ring inboard & outboard

WC/UDig location (Nearside Only)
\[x = -0.1 - 0.1 \text{ m} \]

WC/UDig location (Nearside Only)
\[y = 0.45 - 0.75 \text{ m} \]

Buckle location
\[z = 0 - 0.5 \text{ m} \]

\[x = -0.4 - 0.2 \text{ m} \]
Inboard/outboard D-ring locations

- Considered inboard D-ring location as a potential benefit for farside conditions
- Injury risk increases in nearside loading with inboard D-ring
- Inboard D-ring insufficient to keep farside occupant in wheelchair without excessive neck loads
Concept: Center Airbag To Contain Humans (CATCH)
Seating Position

- Access through side door
- Maximize seats for other occupants
- Provide reaction surface for frontal airbags
- Adequate space to maneuver
- Include side airbag protection
UDIG Anchorages
Wheelchair UDIG attachments
Key goals of volunteer testing

• How do different seating station configurations affect accessibility?
• How do different belt geometries affect fit, comfort, and usability?
• How much variation in belt fit do we get between power and manual wheelchairs in the same condition?
• Feedback from regular wheelchair users on usability.
Pilot testing
Upcoming tasks

- Volunteer evaluation of usability
- Modeling of feasible belt geometries
- Sled testing belt and airbag restraint systems
We would like to thank the National Highway Traffic Safety Administration for sponsoring this project.

Thank you for your attention.

Kathleen D. Klinich kklinich@Umich.edu