

Digital Summit

February 2-3, 2021 sae.org/gim

John Campbell, Exponent Mike Manser, TTI Thomas Fincannon, NHTSA

Agenda

- Mental Models in ADS Overview
- Mental Models in ADS Key Topics
- Implications for Measuring Mental Models
- What's Next? An Overview of On-Going Research

Mental Models in ADS-Overview

What are Mental Models?

Why are Mental Models important for ADS?

What types of Mental Models are relevant?

Key Topic: Automation Levels & Mental Models

 There are 3 features of ADS that are particularly challenging for the development and maintenance of Mental Models:

- 1. The changing role of the driver
- 2. Uncertainties about driver information needs
- 3. Abrupt transitions between manual & automated vehicle control

Key Topic: Level 2 and Level 3 Change the Role of the Driver

Active Operator

Passive Supervisor

Key Topic: Uncertainties about Driver Information Needs

SAE J3016™LEVELS OF DRIVING AUTOMATION

What does the human in the driver's seat

have to do?

SÆ. S4E **LEVEL 0** LEVEL 1

LEVEL 2

SÆ LEVEL 3

SÆ **LEVEL 4**

"the driver's seat"

These are automated driving features

S/E LEVEL 5

You are driving whenever these driver support features You are not driving when these automated driving are engaged - even if your feet are off the pedals and features are engaged - even if you are seated in you are not steering

You must constantly supervise these support features: you must steer, brake or accelerate as needed to maintain safety

you must drive

These automated driving features will not require you to take over driving

These are driver support features

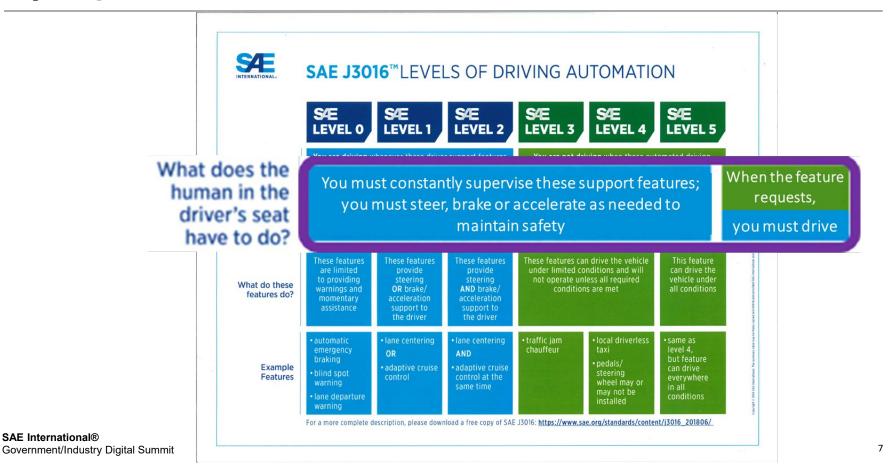
What do these features do? These features are limited to providing warnings and

These features OR brake/ support to the driver

These features provide AND brake/ support to the driver

These features can drive the vehicle under limited conditions and will not operate unless all required

vehicle under


Example Features

- braking
- blind spot
- lane departure
- · lane centering OR
- adaptive cruise control
- lane centering AND
- adaptive cruise control at the same time

- wheel may or may not be installed
- but feature

SAE International® Government/Industry Digital Summit

Key Topic: Uncertainties about Driver Information Needs

Key Topic: Transitions and Mental Models

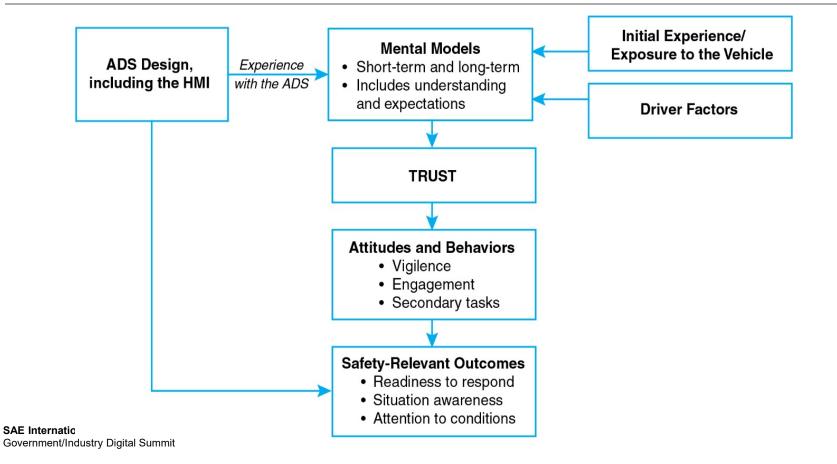
• Functionally-accurate mental models can help drivers anticipate situations or conditions that require a transition.

• Transitions can happen with very little warning and at times when the driver's ability to respond is low.

 If they reflect limitations or failures of the ADS, the driver may not know how to recover.

Key Topic: The Role of the HMI

• The Human-Machine Interface (HMI) is the primary means by which the system communicates to the driver.


 Considerable research is available to support basic design requirements for the HMI

 The challenges presented by ADS require new approaches to conceptualizing and developing next-generation HMIs

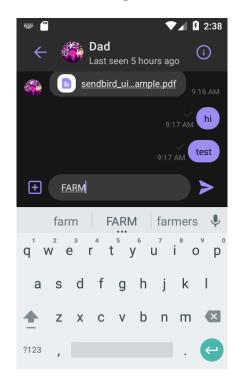
Implications for Measuring Mental Models

- Study multiple mental models beyond just system understanding:
 - Basic operation
 - Driver behaviors
 - Vehicle behaviors
- Test mental models repeatedly; they change to reflect:
 - Information (e.g., training)
 - Feedback (from the HMI)
 - Experience (system operation when facing system limitations and failures)
- Measure mental models using a range of techniques:
 - Subjective measures; e.g., questionnaires or focus groups
 - Gaze behavior
 - Driver interactions with the HMI
 - Driver willingness to engage in secondary tasks
 - Driver responses to alerts/failures/transitions

A Conceptual Framework

11

What's Next? An Overview of On-Going Research


Conducting a NHTSA-funded project to support vehicle safety research by examining issues relating to:

- 1. The relationship between drivers' mental models of ADS
- How mental models impact the development of appropriate versus inappropriate trust in ADS.

Simulator Studies

• Series of driving simulator studies with type of instruction and critical events as key independent variables. Texting task used as a non-driving-related task.

Independent Variable 1 = Instruction Type to Manipulate the Mental Model

1.Basic Instruction:

- How to engage/disengage the system
- Review of status icons on the HMI
- Very basic system operation information

2. Detailed Instruction:

- Basic information plus video with:
 - Detailed description of system capabilities and limitations.
 - Specific scenarios/examples that they will encounter while driving and how the system will respond to them.

Independent Variable 2 = Event Type

1. Limitation: Scenarios that can be resolved without driver intervention. TriggersUncertainty Alert (orange icon + simple tone) (6 scenarios)

2. Failure: Scenarios that require driver intervention. Triggers Uncertainty Alert (orange icon + simple tone), then Request to Intervene (red icon + repeating tone) (4 scenarios)

Segment Type	HMI/System	Specific	Segment
	Response	Scenario	Number
Start-Up	Normal operation	Merge onto	M1
_	once activated	highway from	
		right shoulder	
Normal Driving	Normal operation	Driving, no	ND
_	once activated	events	
Limitation	Uncertainty Alert to	Degraded lane	LK Lim1
	normal operation	markings	_
	1		
Limitation	Uncertainty Alert to	Stopped vehicle	FW_Lim1
	normal operation	with hazard	
		lights	
Failure	Uncertainty Alert to	Tunnel	LK Fail2
	Request to Intervene		_
Failure	Uncertainty Alert to	Construction	FW Fail2
	Request to Intervene	zone with lane	_
	1	drop	

HMI – Basic Status Icons

ADS System Activity Associated with Driver Instrument Display Icon	Icon, Color, and File Name
ADS on Stand-by. ADS interruption (will revert to standby until activation requirements are met again).	· White
ADS on and active. Pressing the ADS button activates the ADS. A brief tone and the change of icon color to green provides feedback.	Green
ADS is on and active, but environment conditions have triggered an Uncertainty Alert.	Orange
ADS is on and active, but environmental conditions have triggered a Request to Intervene.	Red

Government/Industry Digital Summit

Examples of Measures and Variables

MEASURES	DESCRIPTION	VARIABLES			
Components of Mental Models					
Understanding of system capabilities	Knowledge before/after experience using the system	Accuracy scores for questions pertaining to operator behavior in given scenarios on the Mental Models questionnaire			
Understanding of automation level	Knowledge before/after experience using the system	Accuracy scores for questions pertaining to vehicle behavior in given scenarios on the Mental Models questionnaire			
Effect of training on behavior	Changes in understanding of system use, capabilities, and automation level by level of training	Change in accuracy on the Mental Models questionnaire between 1st and 2nd administration for Basic Instruction and Detailed Instruction groups			

Examples of Measures and Variables

MEASURES	DESCRIPTION	VARIABLES				
Trust in the Automation						
	Willingness to engage in NDRT (texting task)	Percentage of total fixations looking away from roadway while automation is engaged				
Locus of control	Willingness to allow an automated driving system to control the driving task	Time elapsed between automatic system disengagement following Request to Intervene (RTI), and system re-engagement by the participant				
	Visual monitoring of roadway environment and vehicle behavior	Percentage of total fixations to driving-related ROIs under Normal Driving and Limitation scenarios				
Self-reported trust	Difference in self-reported trust of the automated system between initial training and end of study	Difference in Likert scores selected for questions relevant to trust in automation presented on a self-report trust questionnaire after driving task, compared to scores selected after initial driving task				
	Self-reported trust	Coding of spontaneous commentary by participants relevant to their feelings of trust in the automated system				

Contact Info

Thank You

- John Campbell, Ph.D.
- Senior Managing Scientist
- Exponent
- (425) 519-8719
- campbellj@exponent.com