Pedestrian Knee Ligament Injuries in the U.S.

Ann Mallory, Allison Kender, Abby Valek, and Brittany Badman
TRC Inc.

Jason Stammen
NHTSA-VRTC
Pedestrian Knee Ligament Injuries in the U.S.:

Cruciate ligament injuries without collateral ligament injuries

- **Background:**
 - Knee Ligament Anatomy
 - Ligament Injury Prediction with Pedestrian Legform
 - Motivation for Research Question
 - Relevant Previous Work

- **Methods**

- **Results**

- **Conclusions**
Background: **Collateral Ligaments**
Background: **Cruciate Ligaments**

Injured by shear displacement

Femur

Lateral

Medial

Tibia

Cruciate Ligaments

Anterior
Background: Pedestrian Legforms

FlexPLI

aPLI
Background: Pedestrian legforms

FlexPLI

- **EuroNCAP (Current):**
 - Collateral: 19/22 mm
 - Cruciates: 10 mm

aPLI

- **EuroNCAP (2023):**
 - Collateral: 27/32 mm
 - Cruciates: None

Cruciate Ligaments

Collateral Ligaments
Research Question

Do cruciate injuries occur without collateral ligament injuries?

NO?
Ensuring vehicle design prevents collateral ligament injury may be sufficient to prevent cruciate injury

YES?
Protecting collateral ligaments may **not** be sufficient to prevent cruciate injury
Previous Work: Controlled Loading

Bose et al, J of Biomech Eng (2008)

PMHS: **Collateral (MCL), Collateral (MCL) + Cruciate (ACL)**

Model: **Cruciate (ACL) failed first with ↑ shear**

Bhalla et al, SAE World Congress (2005)

PMHS: **Collateral (MCL) + Cruciate (ACL)**

Model:
- Above-knee & proximal tibia: **Cruciate (ACL) fails first**
- PMHS: Proximal tibia:
 - **Collateral (MCL) + Cruciate (ACL)**
- Mid & distal tibia:
 - **Collateral (MCL)**
Previous Work: Controlled Loading

Bose et al, J of Biomech Eng (2008)

PMHS: Lateral loading injured **Collateral** or **Collateral + Cruciate** ligaments

Models: **Cruciates** can fail first in some loading conditions

Depends on impact height and severity

PMHS: **Collateral (MCL) + Cruciate (ACL)**

Model: **Cruciate (ACL)** failed first with ↑ shear

PMHS: **Collateral (MCL), Collateral (MCL) + Cruciate (ACL)**

Above-knee & proximal tibia: **Cruciate (ACL)** fails first

PMHS: Proximal tibia: **Collateral (MCL) + Cruciate (ACL)**

Mid & distal tibia: **Collateral (MCL)**
Previous Work: Full-body PMHS Testing

Kerrigan et al, IRCOBI (2012)

• Analysis of whole-body PMHS vehicle tests:
 • 17 UVa
 • 24 other institutions

• Struck side knee:
 • 9 cruciate + collateral injuries
 • 5 collateral injuries (only)
 • 4 cruciate injuries (only)

Crandall et al., Int J Crashworthiness, 2006
Previous Work: Full-body PMHS Testing

Kerrigan et al, IRCOBI (2012)
- Analysis of whole-body PMHS vehicle tests:
 - 17 UVa
 - 24 other institutions
- Struck side knee:
 - 4 cruciate injuries (only)
 - 5 collateral injuries (only)
 - 9 cruciate + collateral injuries

Full-body PMHS: Collateral and cruciate ligament injuries can occur separately or together.
Previous Work: Epidemiology

Teresiński & Mądro, Forensic Sci Int (2001)

- Autopsies:
 - 357 fatally-injured pedestrians in Poland
 - Most common mechanism: bending in medial or lateral impact

Bending: **Collateral** injury

More Bending: **Collateral + Cruciate** injury
Previous Work: Epidemiology

Teresiński & Mądro, Forensic Sci Int (2001)

- Autopsies:
 - 357 fatally-injured pedestrians in Poland
 - Most common mechanism: bending in medial or lateral impact

Bending: Collateral injury

More Bending: Collateral + Cruciate injury

Epidemiology: Isolated cruciate injury in only 7% of injured knees
Isolated Cruciate Ligament Injury in US Pedestrian Crashes

NTDB (National Trauma Data Bank)

- How often cruciate injuries occur in absence of collateral injuries

PCDS (Pedestrian Crash Data Study)

- Impact conditions associated with isolated cruciate injury
Methods: NTDB

NTDB (National Trauma Data Bank)

- 2007-2016: Research Data Set (RDS)
- 2017: Trauma Quality Programs (TQP)
- Trauma Center admissions:
 - Pedestrians
 - Known age
- Knee injuries identified with ICD-9 & ICD-10 diagnostic codes

4,726 pedestrians with knee ligament injury
(No information about vehicle or crash)
Results: NTDB

Age 0-15
- Collateral Injuries Only: 116 (44.6%)
- Cruciate Injuries Only: 94 (36.2%)
- Both: 50 (19.2%)

Age 16+
- Collateral Injuries Only: 1707 (38.2%)
- Cruciate Injuries Only: 1387 (31.1%)
- Both: 1372 (30.7%)
Results: NTDB

Age 0-15
- Collateral Injuries Only: 116 (44.6%)
- Cruciate Injuries Only: 94 (36.2%)
- Both: 50 (19.2%)

Age 16+
- Collateral Injuries Only: 1707 (38.2%)
- Cruciate Injuries Only: 1387 (31.1%)
- Both: 1372 (30.7%)

Suggests isolated cruciate injuries not substantially more common among shorter pedestrians or taller pedestrians.
Methods: PCDS

PCDS (Pedestrian Crash Data Study)

- 1994-1998
- Knee ligament injuries identified with AIS-90
 - Cruciate/collateral injuries not differentiated
 - Narrative case documentation searched for injury detail
- Isolated cruciate injury: detailed case review

8 pedestrians with knee ligament injury
1 case with isolated cruciate injury
(Detailed vehicle & crash information)
Results: PCDS case with isolated cruciate injury

1990 Hyundai Sonata

- Impact speed 50 km/h (30 mph)
- No braking
- First contact at left bumper

65 year-old male, 170 cm (5’7”)

- Walking slowly
- Struck on right side, with right leg forward
- Cruciate injury to right knee
Results: PCDS case with isolated cruciate injury

1990 Hyundai Sonata
• Impact speed 50 km/h (30 mph)
• No braking
• First contact at left bumper

65 year-old male, 170 cm (5’7”)
• Walking slowly
• Struck on right side, with right leg forward
• Cruciate injury to right knee
• Knee height 4 cm above top of bumper

Example of isolated cruciate injury in a typical pedestrian impact scenario

Shear displacement at knee
Conclusion #1

Do cruciate injuries occur without collateral ligament injuries?

- NO?
- YES

Cruciate injuries do occur without collateral ligament injury in real-world cases

- NTDB: Almost ⅓ of pedestrian knee ligament cases
- PCDS: Common pedestrian impact scenario

Supports consideration of cruciate injury in assessments of pedestrian knee injury risk
Conclusion #2

Risk of isolated cruciate ligament injury & relative knee/bumper height

- PCDS: Isolated cruciate injury in below-knee impact
- Previous modeling: Isolated cruciate injury in above-knee & below-knee impacts
- NTDB: Similar proportions of children & adults sustained isolated cruciate injuries

Unclear whether legform testing at a single launch height could predict cruciate injury risk for taller or shorter pedestrians
Conclusion #3

• Combined data from 2 sources
 • NTDB \(\rightarrow\) very large number of recent cases (but only medical records)
 • PCDS \(\rightarrow\) crash and injury detail (but on small number of older cases)

Large-scale, comprehensive, representative pedestrian dataset could improve analyses of pedestrian injuries with modern vehicles
Contact Info

Ann Mallory, Allison Kender, Abby Valek, and Brittany Badman
TRC Inc.

Jason Stammen
NHTSA-VRTC

Questions and follow-up:
ann.mallory.ctr@dot.gov or jason.stammen@dot.gov