U.S. DEPARTMENT OF TRANSPORTATION

NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION

CALIBRATION TEST PROCEDURE

for

Part 572 Subpart W

Q3s Three-Year-Old Child Test Dummy

ENFORCEMENT
Office of Vehicle Safety Compliance
Mail code: NVS-220
1200 New Jersey Ave., SE
Washington, DC 20590
TABLE OF CONTENTS

1. **PURPOSE AND APPLICATION** ... 1
2. **GENERAL REQUIREMENTS** ... 1
3. **SECURITY** ... 3
4. **GOOD HOUSEKEEPING** ... 4
5. **TEST SCHEDULING AND MONITORING** .. 4
6. **TEST DATA DISPOSITION** ... 4
7. **GOVERNMENT FURNISHED PROPERTY (GFP)** .. 4
8. **CALIBRATION OF TEST INSTRUMENTATION** ... 7
9. **DEFINITIONS** ... 8
10. **INSTRUMENTATION AND TEST CONDITIONS** ... 8
 10.1 **INSTRUMENTATION REQUIRED FOR QUALIFICATION TESTS (572.219)** 8
 10.2 **OTHER TRANSDUCERS (S572.219)** ... 9
 10.3 **TRANSUDER TEST CONDITIONS (S572.219)** 10
 10.4 **IMPACTOR PROBE (S572.219(a)(1))** .. 11
 10.5 **GENERAL TEST CONDITIONS** .. 12
11. **CALIBRATION TEST EXECUTION** .. 12
 11.1 **HEAD CALIBRATION (S572.212)** .. 12
 11.1.1 Frontal Head Qualification Test ... 13
 11.1.2 Lateral Head Qualification Test ... 14
 11.2 **NECK CALIBRATION (S572.213)** .. 15
 11.2.1 Fore-Aft Neck Flexion Qualification Test 15
 11.2.2 Lateral Neck Flexion Qualification Test 16
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2.3</td>
<td>Neck Torsion Qualification Test</td>
<td>18</td>
</tr>
<tr>
<td>11.3</td>
<td>SHOULDER CALIBRATION (S572.214)</td>
<td>19</td>
</tr>
<tr>
<td>11.4</td>
<td>THORAX WITH ARM CALIBRATION (S572.215)</td>
<td>21</td>
</tr>
<tr>
<td>11.5</td>
<td>THORAX WITHOUT ARM CALIBRATION (S572.216)</td>
<td>23</td>
</tr>
<tr>
<td>11.6</td>
<td>LUMBAR SPINE CALIBRATION (S572.217)</td>
<td>24</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Fore-Aft Lumbar Flexion Qualification</td>
<td>24</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Lateral Lumbar Flexion Qualification</td>
<td>26</td>
</tr>
<tr>
<td>11.7</td>
<td>PELVIS CALIBRATION (S572.218)</td>
<td>28</td>
</tr>
<tr>
<td>12.</td>
<td>POST TEST REQUIREMENTS</td>
<td>29</td>
</tr>
<tr>
<td>13.</td>
<td>REPORTS</td>
<td>29</td>
</tr>
<tr>
<td>13.1</td>
<td>APPARENT NONCONFORMANCE</td>
<td>29</td>
</tr>
<tr>
<td>13.2</td>
<td>FINAL PERFORMANCE CALIBRATION REPORTS</td>
<td>30</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Requirements</td>
<td>30</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Report Cover Format</td>
<td>31</td>
</tr>
<tr>
<td>14.</td>
<td>DATA SHEETS</td>
<td>32</td>
</tr>
<tr>
<td>14.1</td>
<td>DUMMY DAMAGE CHECKLIST</td>
<td>32</td>
</tr>
<tr>
<td>14.2</td>
<td>EXTERNAL MEASUREMENTS CHECKLIST</td>
<td>34</td>
</tr>
<tr>
<td>14.3</td>
<td>HEAD CALIBRATION CHECKLIST</td>
<td>41</td>
</tr>
<tr>
<td>14.4</td>
<td>NECK CALIBRATION CHECKLISTS</td>
<td>46</td>
</tr>
<tr>
<td>14.5</td>
<td>SHOULDER CALIBRATION CHECKLIST</td>
<td>56</td>
</tr>
<tr>
<td>14.6</td>
<td>THORAX WITH ARM CALIBRATION CHECKLIST</td>
<td>58</td>
</tr>
<tr>
<td>14.7</td>
<td>THORAX WITHOUT ARM CALIBRATION CHECKLIST</td>
<td>61</td>
</tr>
<tr>
<td>14.8</td>
<td>LUMBAR SPINE CALIBRATION CHECKLISTS</td>
<td>63</td>
</tr>
</tbody>
</table>
14.8 PELVIS CALIBRATION CHECKLIST ...69
14.9 INSTRUMENTATION CALIBRATION ...71
LIST OF FIGURES

FIGURE 1. ASSEMBLY GROUPS FOR THE Q3s (020-0100) ... 3
FIGURE 2. EXAMPLE OF Q3s STORAGE CHAIR ... 5
FIGURE 3. Q3s POSITIONED IN STORAGE CHAIR .. 6
FIGURE 4. Q3s STORAGE CHAIR THORAX SUPPORT RAILS .. 6
FIGURE 5. Q3s QUALIFICATION BENCH SEAT SPECIFICATIONS .. 9
FIGURE 6. Q3s HEAD ASSEMBLY (020-1200) .. 13
FIGURE 7. Q3s EXTERNAL DIMENSIONS ... 38
FIGURE 8. STATURE MEASUREMENT FIXTURE ... 39
FIGURE 9. ANTHROPOMETRY MEASUREMENT FIXTURE .. 40
FIGURE 10. FRONTAL HEAD DROP TEST SET-UP SPECIFICATIONS 44
FIGURE 11. LATERAL HEAD DROP TEST SET-UP SPECIFICATIONS 45
FIGURE 12. NECK FORE-AFT TEST SET-UP SPECIFICATIONS .. 48
FIGURE 13. NECK LATERAL TEST SET-UP SPECIFICATIONS ... 51
FIGURE 14. NECK TORSION TEST SET-UP SPECIFICATIONS ... 54
FIGURE 15. NECK CALIBRATION TEST PENDULUM SPECIFICATIONS 55
FIGURE 16. LATERAL SHOULDER IMPACT TEST SET-UP SPECIFICATIONS 57
FIGURE 17. LATERAL THORAX WITH ARM IMPACT TEST SET-UP SPECIFICATIONS 60
FIGURE 18. LATERAL THORAX WITHOUT ARM IMPACT TEST SET-UP SPECIFICATIONS ... 62
FIGURE 19. LUMBAR FORE-AFT FLEXION TEST SET-UP SPECIFICATIONS 65
FIGURE 20. LUMBAR LATERAL FLEXION TEST SET-UP SPECIFICATIONS 68
FIGURE 21. PELVIS LATERAL IMPACT TEST SET-UP SPECIFICATIONS 70
LIST OF TABLES

TABLE 1. DRAWING PACKAGE INDEX ... 2
TABLE 2. NECK ASSEMBLY PENDULUM VELOCITY ... 19
TABLE 3. LUMBAR ASSEMBLY PENDULUM VELOCITY ... 27
TABLE 5. HEAD QUALIFICATION RESULTS ... 43
TABLE 6. FORE-AFT NECK CALIBRATION RESULTS ... 47
TABLE 7. LATERAL NECK CALIBRATION RESULTS .. 50
TABLE 8. TORSION NECK CALIBRATION RESULTS ... 53
TABLE 9. SHOULDER IMPACT CALIBRATION RESULTS (572.214(b)) 57
TABLE 10. THORAX WITH ARM IMPACT CALIBRATION RESULTS (572.215(b)) 59
TABLE 11. THORAX WITHOUT ARM IMPACT CALIBRATION RESULTS (572.216(b)) 62
TABLE 12. FORE-AFT LUMBAR SPINE CALIBRATION RESULTS .. 64
TABLE 13. LATERAL LUMBAR SPINE CALIBRATION RESULTS .. 67
TABLE 14. PELIVS IMPACT CALIBRATION RESULTS (572.218(b)) ... 70
1. PURPOSE AND APPLICATION

The purpose of this laboratory procedure is to provide dummy users (independent testing laboratories under contract with the Office of Vehicle Safety Compliance (OVSC)) with standard test procedures for performing receiving-inspection and performance calibration tests on the Part 572, Subpart W dummy so that repetitive and correlative test results can be obtained. The following tests have been developed to establish a uniform calibration procedure for all users as the means of verifying the performance of the dummy.

A. EXTERNAL DIMENSIONS (PADI)
B. FRONTAL HEAD DROP TEST (572.212(b)(1))
C. LATERAL HEAD DROP TEST (572.212(b)(2))
D. FORE-AFT NECK FLEXION TEST (572.213(b)(1))
E. LATERAL NECK FLEXION TEST (572.213(b)(2))
F. NECK TORSION TEST (572.213(b)(3))
G. SHOULDER IMPACT TEST (572.214(b))
H. THORAX WITH ARM IMPACT TEST (572.215(b))
I. THORAX WITHOUT ARM IMPACT TEST (572.216(b))
J. FORE-AFT LUMBAR FLEXION TEST (572.217(b)(1))
K. LATERAL LUMBAR FLEXSION TEST (572.217(b)(2))
L. PELVIS IMPACT TEST (572.218(b))

National Highway Traffic Safety Administration (NHTSA) contract laboratories performing FMVSS 213a testing for the Office of Vehicle Safety Compliance (OVSC) must use this laboratory procedure for the calibration of Part 572, Subpart W dummies.

2. GENERAL REQUIREMENTS

Each Part 572, Subpart W dummy used in a compliance test must meet the specifications and performance criteria of Part 572 before each test in order to be an acceptable compliance test tool. The COR will determine when post-test calibrations are necessary.

The Part 572, Subpart W, Q3s, 3-Year-Old Child Dummy consists of components and assemblies specified in the drawing and specifications package which is available from www.regulations.gov under Docket ID No. NHTSA-2020-0088.
The Q3s 3-year-old Child Test Dummy (Q3s) is defined by drawings and specifications containing the following materials:

(2) A manual entitled “Procedures for Assembly, Disassembly and Inspection (PADI) of the Q3s Child Side Impact Crash Test Dummy, January 2021.”

<table>
<thead>
<tr>
<th>TABLE 1. DRAWING PACKAGE INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Assembly</td>
</tr>
<tr>
<td>(i) Head Assembly</td>
</tr>
<tr>
<td>(ii) Neck Assembly</td>
</tr>
<tr>
<td>(iii) Calibration Head Form</td>
</tr>
<tr>
<td>(iv) Neck Twist Test Fixture Assembly</td>
</tr>
<tr>
<td>(v) Upper Torso Assembly</td>
</tr>
<tr>
<td>(vi) Lower Torso Assembly</td>
</tr>
<tr>
<td>(vii) Pelvis Assembly</td>
</tr>
<tr>
<td>(viii) Left Leg Assembly</td>
</tr>
<tr>
<td>(ix) Right Leg Assembly</td>
</tr>
<tr>
<td>(x) Left Arm Assembly</td>
</tr>
<tr>
<td>(xi) Right Arm Assembly</td>
</tr>
<tr>
<td>(xii) Suit</td>
</tr>
</tbody>
</table>
3. SECURITY

All NHTSA Part 572, Subpart W test dummies delivered to the contract laboratory as Government Furnished Property (GFP) will be stored in a safe and secure area such as the dummy calibration laboratory. Any security problems shall be reported by telephone to the Industrial Property Manager (IPM), Office of Contracts and Procurement, within two working days after the incident. A letter containing specific details of the security problem will be sent to the IPM (with copy to the COR) within 48 hours.

The contractor is responsible for maintaining the NHTSA test dummies in good working order and shall protect and segregate the data that evolves from
conducting Part 572, Subpart W dummy. Ensure that all calibration data is traceable to each corresponding compliance test.

No information concerning the Part 572, Subpart W dummy calibration data shall be released to anyone except the COR, unless specifically authorized by the COR or the COR's Division Chief or Office Director.

NOTE: No individuals, other than contractor personnel directly involved in the dummy calibration test program, shall be allowed to witness dummy calibration tests unless specifically authorized by the COR.

4. **GOOD HOUSEKEEPING**

Contractors shall maintain the entire equipment compliance testing area, test fixtures and instrumentation in a neat, clean, and painted condition with test instruments arranged in an orderly manner consistent with good test laboratory housekeeping practices.

5. **TEST SCHEDULING AND MONITORING**

The Part 572, Subpart W dummies are being calibrated as test tools to be used in federal motor vehicle safety standards testing to evaluate potential non-compliance. The schedule for these performance calibration tests must be correlated with that of the compliance test schedule. All testing shall be coordinated to allow monitoring by the COR.

6. **TEST DATA DISPOSITION**

The contractor shall make all dummy calibration data available to the COR for review and analysis as required.

All backup data sheets, plots, recordings, technician’s notes, etc. shall be either sent to the COR or retained by the contractor for a minimum of 3 years after the conclusion of each delivery order, purchase order, etc. The COR shall direct final disposition at that time.

7. **GOVERNMENT FURNISHED PROPERTY (GFP)**

Part 572, Subpart W test dummies will be furnished to the contract laboratory by the OVSC. The dummies shall be stored in a chair or similar device which supports the thorax without putting tension on the neck. In the example chair design shown in Figure 2 through Figure 4, the thorax is supported on either side by rails which splay outwards. A seat belt with buckle keeps the dummy from falling forward. To prevent buttocks deformation, the seat is cushioned with foam padding so that the dummy is not directly seated on a hard surface. These dummies shall be stored in a secured room that is kept between 55°F and 85°F
and relative humidity between 10% and 70%. The contractor will check dummy components for damage after each test and complete a dummy damage checklist that will be included with the posttest dummy calibration. The COR will be kept informed of the dummies condition in order that replacement parts can be provided.

FIGURE 2. EXAMPLE OF Q3s STORAGE CHAIR
FIGURE 3. Q3s POSITIONED IN STORAGE CHAIR

FIGURE 4. Q3s STORAGE CHAIR THORAX SUPPORT RAILS

(NOTE: Arm is raised to illustrate support rails; Q3s is not required to be stored in this position)
8. CALIBRATION OF TEST INSTRUMENTATION

Before the contractor initiates the dummy performance calibration test program, a test instrumentation calibration system must be implemented and maintained in accordance with the following calibration practices:

A. Standards for calibrating the measuring and test equipment shall be stored and used under appropriate environmental conditions to assure their accuracy and stability.

B. All measuring instruments and standards shall be calibrated by the contractor, or a commercial facility, against a higher order standard at periodic intervals not exceeding 12 months for instruments and 12 months for the calibration standards except for static types of measuring devices such as rulers, weights, etc., which shall be calibrated at periodic intervals not to exceed two years. Records, showing the calibration traceability to the National Institute of Standards and Technology (NIST), shall be maintained for all measuring and test equipment.

C. All measuring and test equipment and measuring standards shall be labeled with the following information:

 1. Date of calibration
 2. Date of next scheduled calibration
 3. Name of the technician who calibrated the equipment

D. The contractor shall provide the COR a written calibration procedure that includes, as a minimum, the following information for all measurement and test equipment:

 1. Type of equipment, manufacturer, model number, etc.
 2. Measurement range
 3. Accuracy
 4. Calibration interval
 5. Type of standard used to calibrate the equipment (calibration traceability of the standard must be evident).
 6. The actual procedures and forms used to perform the calibrations.
E. The contractor shall keep records of calibrations for all test instrumentation in a manner that assures the maintenance of established calibrations schedules. All such records shall be readily available for inspection when requested by the COR. The calibration will need the written acceptance of the COR before testing begins.

G. Test equipment shall receive a calibration check immediately prior to each test. This check shall be recorded by the test technician(s) and made available if requested by the COR.

9. DEFINITIONS

PADI- Procedures for Assembly, Disassembly, and Inspection

10. INSTRUMENTATION AND TEST CONDITIONS

10.1 INSTRUMENTATION REQUIRED FOR QUALIFICATION TESTS (572.219)

The contractor shall provide and install the following instrumentation to the GFP dummies for qualification testing and if required, for compliance testing. The instrumentation used during the compliance tests shall be those installed during qualification testing.

A. HEAD – The head accelerometers shall have dimensions; response characteristics and sensitive mass locations specified in drawing SA572-S4 and be mounted in the head as shown in drawing 020-0100. (572.219(a)(2))

Three accelerometers shall be mounted in the head cavity to measure orthogonal accelerations (Ax, Ay, Az) at the center of gravity (CG) of the head assembly.

B. NECK – The upper neck force transducer shall have the dimensions, response characteristics, and sensitive axis locations specified in drawing SA572-S8 and shall be mounted at the head-neck assembly location as shown in drawing 020-0100. (572.219(a)(3))

Angular rate sensors for the fore-aft neck flexion and lateral neck flexion qualification tests have the dimensions and response characteristics specified in drawing SA572-S58 and are mounted in the head form and on the pendulum as shown in Figures 12 and 13. (572.219(a)(4))

C. CHEST – The torso string potentiometer shoulder deflection transducers have the dimensions and response characteristics specified in drawing SA572-S38 or SA572-S39 and are mounted to the torso assembly as shown in drawing 020-0100. (572.219(a)(5))
An IR-TRACC thorax deflection transducer should have the dimensions and response characteristics specified in drawing SA572-S37 and be mounted to the torso assembly as shown in drawing 020-0100. (572.219(a)(6))

D. PELVIS – The lumbar spine force and moment transducer has the dimensions, response characteristics, and sensitive axis locations specified in drawing SA572-S8 and is mounted in the torso assembly as shown in drawing 020-0100. (572.219(a)(7))

Angular rate sensors for the fore-aft lumbar flexion and lateral lumbar flexion qualification tests have the dimensions and response characteristics specified in drawing SA572-S58 and are mounted in the head form and on the pendulum as shown in Figures 19 and 20. (572.219(a)(8))

E. TEST FIXTURE – The neck pendulum and thorax probe accelerometers shall have the dimensions and characteristics of drawing SA572-S4.

The Q3s Side Impact Test Dummy shall be placed on a test bench with dimensions shown below in Figure 5.

![FIGURE 5. Q3s QUALIFICATION BENCH SEAT SPECIFICATIONS](image)

10.2 OTHER TRANSDUCERS (S572.219)

The following transducers are required only when needed for specific test programs as directed by the COR.
A. Optional angular rate sensors for the head shall have the dimensions and response characteristics specified in any of drawings SA572-S55, SA572-S56, SA572-S57 or SA572-S58 and are mounted in the head as shown in drawing 020-0100. (572.219(b)(1))

B. Upper spine accelerometers shall have the dimensions, response characteristics, and sensitive mass locations specified in drawing SA572-S4 and are mounted in the torso assembly as shown in drawing 020-0100. (572.219(b)(2))

C. The addition of pelvis accelerometers shall have the dimensions, response characteristics, and sensitive mass locations specified in drawing SA572-S4 and are mounted in the torso assembly as shown in drawing 020-0100. (572.219(b)(3))

D. The T1 accelerometer shall have the dimensions, response characteristics, and sensitive mass location specified in drawing SA572-S4 and is mounted in the torso assembly as shown in drawing 020-0100. (572.219(b)(4))

E. The lower neck force and moment transducer shall have the dimensions, response characteristics, and sensitive axis locations specified in drawing SA572-S8 and is mounted to the neck assembly as shown in drawing 020-0100. (572.219(b)(5))

F. The tilt sensor shall have the dimensions and response characteristics specified in drawing SA572-S44 and is mounted to the torso assembly as shown in drawing 020-0100. (572.219(b)(6))

G. Pubic force transducers shall have the dimensions and response characteristics specified in drawing SA572-S7 and are mounted in the torso assembly as shown in drawing 020-0100. (572.219(b)(7))

10.3 TRANSUDER TEST CONDITIONS (S572.219)

A. TRANSDUCER MOUNTS – The mountings for sensing devices shall have no resonance frequency less than 3 times the frequency range of the applicable channel class. (572.219(e))

B. TRANSDUCER SIGN CONVENTION - Coordinate signs for instrumentation polarity are to conform to SAE J1733. (572.219(d))

C. TRANSDUCER OUTPUTS and FILTERING - The outputs of acceleration and force-sensing devices installed in the dummy and in the test apparatus specified by this part are recorded with individual data channels. Each data
channel will be comprised of a sensor, signal conditioner, data acquisition device, and all interconnecting cables, and must conform to the requirements of SAE Recommended Practice J211/1 MAR95, "Instrumentation for Impact Test," with channel classes as follows: (572.219(c))

(1) Pendulum acceleration CFC 180 (572.219(c)(1))
(2) Pendulum angular rate CFC 60 (572.219(c)(2))
(3) Neck twist fixture rotation CFC 60 (572.219(c)(3))
(4) Test probe acceleration CFC 180 (572.219(c)(4))
(5) Head accelerations CFC 1000 (572.219(c)(5))
(6) Headform angular rate CFC 60 (572.219(c)(6))
(7) Neck moments, upper and lower CFC 600 (572.219(c)(7))
(8) Shoulder deflection CFC 180 (572.219(c)(8))
(9) Thorax deflection CFC 180 (572.219(c)(9))
(10) Upper spine accelerations CFC 180 (572.219(c)(10))
(11) T1 acceleration CFC 180 (572.219(c)(11))
(12) Pubic force CFC 180 (572.219(c)(12))
(13) Pelvis accelerations CFC 1000 (572.219(c)(13))

10.4 IMPACTOR PROBE (S572.219(a)(1))

A. The test probe for shoulder, thorax, and pelvis impacts is of rigid metallic construction, concentric in shape, and symmetric about its longitudinal axis.

B. It has a mass of 3.81 ± 0.02 kg and a minimum mass moment of inertia of 560 kg-cm² in yaw and pitch about the CG. One-third (1/3) of the weight of the suspension cables and their attachments to the impact probe is included in the calculation of mass, and such components may not exceed five percent of the total weight of the test probe.

C. The impacting end of the probe, perpendicular to and concentric with the longitudinal axis, is at least 25.4 mm long, and has a flat, continuous, and non-deformable 70.0 ± 0.25 mm diameter face with an edge radius between 6.4-12.7 mm.

D. The probe's end opposite to the impact face has provisions for mounting of an accelerometer with its sensitive axis collinear with the longitudinal axis of the probe.
E. No concentric portions of the impact probe may exceed the diameter of the impact face.

F. The impact probe shall have a free air resonant frequency of not less than 1000 Hz.

10.5 GENERAL TEST CONDITIONS

A. Dummy limb joints are set at 1G, barely restraining the weight of the limb when it is extended horizontally. The force needed to move a limb segment is not to exceed 2G throughout the range of limb motion. (572.219(f))

B. Performance tests of the same component, segment, assembly, or fully assembled dummy are separated in time by not less than 30 minutes unless otherwise specified. (572.219(g))

C. Surfaces of dummy components may not be painted except as specified in this subpart or in drawings subtended by this subpart. (572.219(h))

D. The dummy performance tests are conducted at any temperature from 20.6 and 22.2°C (69 and 72 °F) and at any relative humidity from 10% to 70% after exposure of the dummy to these conditions for a period of not less than 4 hours.

11. CALIBRATION TEST EXECUTION

When conducting calibration tests, complete the data sheets in section 14.

11.1 HEAD CALIBRATION (S572.212)

A. Head Assembly

The head assembly for this test consists of the complete head (drawing 020-1200) with head accelerometer assembly (drawing 020-1013A), and a half mass simulated upper neck load cell (drawing 020-1050).
11.1.1 Frontal Head Qualification Test

A. Requirements

When the head assembly is dropped from a height of 376.0 ± 1.0 mm (14.8 ± 0.04 in), the peak resultant acceleration at the location of the accelerometers at the head CG shall have a value between 255 G and 300 G. The resultant acceleration vs. time history curve shall be unimodal and the oscillations occurring after the main pulse must be less than 10 percent of the peak resultant acceleration. The lateral acceleration shall not exceed ± 15 G (zero to peak).

B. Procedure

(1) Soak the head assembly in a controlled environment at any temperature between 20.6 and 22.2°C (69 and 72 °F) and a relative humidity from 10 to 70 percent for at least four hours prior to a test.

(2) Prior to the test, clean the impact surface of the skin and the impact plate surface with isopropyl alcohol, trichloroethane, or an equivalent. Both surfaces must be clean and dry for testing.

(3) Suspend and orient the head assembly with the forehead facing the impact surface as shown in Figure 10. The lowest point on the forehead must be 376.0 ± 1.0 mm (14.8 ± 0.04 in) from the impact surface. Adjust...
the head angle so that the upper neck load cell simulator is 28 ± 2
degrees forward from vertical while assuring that the head remains
horizontal laterally.

(4) Drop the head assembly from the specified height by means that ensure a
smooth, instant release onto a rigidly supported flat horizontal steel plate
which is 50.8 mm (2 in) thick and 610 mm (24 in) square. The impact
surface shall be clean, dry and have a surface finish of not less than 0.2
microns (RMS) and not more than 2.0 microns (RMS).

(5) Allow at least 2 hours between successive tests on the same head.

11.1.2 Lateral Head Qualification Test

A. Requirements

When the head assembly is dropped from a height of 200.0 ± 1.0 mm (7.87 ±
0.04 in), the peak resultant acceleration at the location of the accelerometers
at the head CG shall have a value between 114 G and 140 G. The resultant
acceleration vs. time history curve shall be unimodal; oscillations occurring
after the main pulse must be less than 10 percent of the peak resultant
acceleration. The X-component acceleration shall not exceed ± 15 G (zero to
peak).

B. Procedure

(1) Soak the head assembly in a controlled environment at any temperature
between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity from 10
to 70 percent for at least four hours prior to a test.

(2) Prior to the test, clean the impact surface of the skin and the impact plate
surface with isopropyl alcohol, trichloroethane, or an equivalent. Both
surfaces must be clean and dry for testing.

(3) The head is dropped on the aspect that opposes the primary load vector
of the ensuing full-scale test for which the dummy is being qualified. A left
drop set-up that is used to qualify the dummy for an ensuing full scale left
side impact is depicted in Figure 11. A right drop set-up would be the
mirror image of that shown in Figure 11.

(4) Suspend and orient the head assembly as shown in Figure 11. The lowest
point on the impact side of the head must be 200.0 ± 1.0 mm (7.87 ± 0.04
in) from the impact surface. Adjust the head angle so that the head base
plane measured from the base surface of the upper neck load cell
simulator is 35 ± 2 degrees forward from the vertical while assuring that
the head remains horizontal in the fore-aft direction.
(5) Drop the head assembly from the specified height by means that ensure a smooth, instant release onto a rigidly supported flat horizontal steel plate which is 50.8 mm (2 in) thick and 610 mm (24 in) square. The impact surface shall be clean, dry and have a surface finish of not less than 0.2 microns (RMS) and not more than 2.0 microns (RMS).

(6) Allow at least 2 hours between successive tests on the same head.

11.2 NECK CALIBRATION (S572.213)

11.2.1 Fore-Aft Neck Flexion Qualification Test

A. Neck and Headform Assembly

The neck and headform assembly shown in Figures 12 and 13, consist of the headform (drawing 020-9050, sheet 1) with angular rate sensor installed (drawing SA572-S58), six-channel neck/lumbar load cell (drawing SA572-S8), neck assembly (drawing 020-2400), neck/torso interface plate (drawing 020-9056) and pendulum interface plate (drawing 020-9051) with angular rate sensor installed (drawing SA572-S58).

B. Requirement

When the neck and headform assembly is tested according to the test procedure in paragraph (c) of this section, it shall have the following characteristics:

(1) Plane D, referenced in Figure 12, shall rotate in the direction of pre-impact flight with respect to the pendulum’s longitudinal centerline between 69.5 degrees and 81.0 degrees. During the time interval while the rotation is within these angles, the peak moment measured by the neck transducer (drawing SA572-S8) shall have a value between 41.5 N-m (30.6 ft-lb) and 50.7 N-m (37.4 ft-lb).

(2) The decaying headform rotation vs. time curve shall cross the zero angle with respect to its initial position at time of impact relative to the pendulum centerline between 45 to 55 ms after the time the peak rotation value is reached.

(3) All instrumentation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are parallel.

(4) The headform rotation shall be calculated by the following formula with the integration beginning at time zero:
Headform rotation (deg) = \int [(\text{Headform Angular Rate})_y - (\text{Pendulum Angular Rate})_y] \, dt

(5) \((\text{Headform Angular Rate})_y\) is the angular rate about the y-axis in deg/sec measured on the headform (drawing 020-9050, sheet 1), and \((\text{Pendulum Angular Rate})_y\) is the angular rate about the y-axis in deg/sec measured on the pendulum interface plate (drawing 020-9051).

C. Procedure

(1) Soak the neck assembly in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity between 10 and 70 percent for at least four hours prior to a test.

(2) Mount the neck and headform assembly, shown in Figure 15, so that the midsagittal plane of the headform is vertical and coincides with the plane of motion of the pendulum, and with the neck placement such that the front side of the neck is closest to the honeycomb material as shown in Figure 12.

(3) Release the pendulum and allow it to fall freely from a height to achieve an impact velocity of \(4.7 \pm 0.1 \text{ m/s} (15.4 \pm 0.3 \text{ ft/s})\), measured by an accelerometer mounted on the pendulum at time zero.

(4) Stop the pendulum from the initial velocity with an acceleration vs. time pulse that meets the velocity change as specified in Table 2. Integrate the pendulum accelerometer data channel to obtain the velocity vs. time curve beginning at time zero.

(5) Time zero is defined as the time of initial contact between the pendulum striker plate and the honeycomb material.

11.2.2 Lateral Neck Flexion Qualification Test

A. Neck and Headform Assembly

The neck and headform assembly shown in Figures 12 and 13, consist of the headform (drawing 020-9050, sheet 1) with angular rate sensor installed (drawing SA572-S58), six-channel neck/lumbar load cell (drawing SA572-S8), neck assembly (drawing 020-2400), neck/torso interface plate (drawing 020-9056) and pendulum interface plate (drawing 020-9051) with angular rate sensor installed (drawing SA572-S58).
B. Requirement

When the neck and headform assembly is tested according to the test procedure in paragraph (c) of this section, it shall have the following characteristics:

1. Plane D, referenced in Figure 13 in, shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal centerline between 76.5 degrees and 87.5 degrees. During the time interval while the rotation is within these angles, the peak moment measured by the neck transducer (drawing SA572-S8) shall have a value between 25.3 N-m (18.7 ft-lb) and 32.0 N-m (23.6 ft-lb).

2. The decaying headform rotation vs. time curve shall cross the zero angle with respect to its initial position at time of impact relative to the pendulum centerline between 61 to 71 ms after the time the peak rotation value is reached.

3. All instrumentation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are parallel.

4. The headform rotation shall be calculated by the following formula with the integration beginning at time zero:

\[
\text{Headform rotation (deg)} = \int \left[(\text{Headform Angular Rate})_y - (\text{Pendulum Angular Rate})_y \right] dt
\]

5. \((\text{Headform Angular Rate})_y\) is the angular rate about the y-axis in deg/sec measured on the headform (drawing 020-9050, sheet 1), and \((\text{Pendulum Angular Rate})_y\) is the angular rate about the y-axis in deg/sec measured on the pendulum interface plate (drawing 020-9051).

C. Procedure

1. Soak the neck assembly in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity between 10 and 70 percent for at least four hours prior to a test.

2. For the lateral neck flexion test, the test is carried out in the direction opposing the primary load vector of the ensuing full-scale test for which the dummy is being qualified. A right flexion test set-up that is used to qualify the dummy for an ensuing full-scale right-side impact is depicted in Figure 13. A left flexion test set-up would be depicted by a mirror image of all components beneath the pendulum interface plate in Figure 13.

3. Mount the neck and headform assembly on the pendulum, shown in Figure 15, so that the midsagittal plane of the headform is vertical and
coincides with the plane of motion of the pendulum, and with the neck placement such that the right (or left) side of the neck is closest to the honeycomb material as shown in Figure 13.

(4) Release the pendulum and allow it to fall freely from a height to achieve an impact velocity of 3.8 ± 0.1 m/s (12.5 ± 0.3 ft/s), measured by an accelerometer mounted on the pendulum at time zero.

(5) Stop the pendulum from the initial velocity with an acceleration vs. time pulse that meets the velocity change as specified in Table 2. Integrate the pendulum accelerometer data channel to obtain the velocity vs. time curve beginning at time zero.

(6) Time zero is defined as the time of initial contact between the pendulum striker plate and the honeycomb material.

11.2.3 Neck Torsion Qualification Test

A. Neck Assembly

The neck assembly shown in Figure 14, consists of the neck twist fixture (drawing DL210-200) with rotary potentiometer installed (drawing SA572-S51), neck adaptor plate assembly (drawing DL210-220), neck assembly (drawing 020-2400), six-channel neck/lumbar load cell (drawing SA572-S8), and twist fixture end plate (drawing DL210-210).

B. Requirement

When the neck assembly is tested according to the test procedure in paragraph (c) of this section, it shall have the following characteristics:

(1) The neck twist fixture (drawing DL210-200), referenced in Figure 14, shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal centerline between 74.5 degrees and 91.0 degrees, as measured by the rotary potentiometer (drawing SA572-S51). During the time interval while the rotation is within these angles, the peak moment measured by the neck transducer (drawing SA572-S8) shall have a value between 8.0 N-m (5.9 ft-lb) and 10.0 N-m (7.4 ft-lb).

(2) The decaying neck twist fixture rotation vs. time curve shall cross the zero angle with respect to its initial position at time of impact relative to the pendulum centerline between 85 to 102 ms after the time the peak rotation value is reached.

(3) All instrumentation data channels are defined to be zero when the zero pins are installed such that the neck is not in torsion.
C. Procedure

(1) Soak the neck assembly in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity between 10 and 70 percent for at least four hours prior to a test.

(2) For the neck torsion test, the test is carried out in the direction opposing the primary load vector of the ensuing full-scale test for which the dummy is being qualified. A right torsion test set-up that is used to qualify the dummy for an ensuing full-scale right-side impact is depicted in Figure 14. A left flexion test set-up would be a mirror image of that shown in Figure 14.

(3) Mount the neck assembly, defined in paragraph (a)(2) of this section, on the pendulum, described by Figure 15, as shown in Figure 14.

(4) Release the pendulum and allow it to fall freely from a height to achieve an impact velocity of 3.6 ± 0.1 m/s (11.8 ± 0.3 ft/s), measured by an accelerometer mounted on the pendulum at time zero.

(5) Stop the pendulum from the initial velocity with an acceleration vs. time pulse that meets the velocity change as specified in Table 2. Integrate the pendulum accelerometer data channel to obtain the velocity vs. time curve beginning at time zero.

(6) Time zero is defined as the time of initial contact between the pendulum striker plate and the honeycomb material.

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>Fore-Aft Flexion (m/s)</th>
<th>Time (ms)</th>
<th>Lateral Flexion (m/s)</th>
<th>Time (ms)</th>
<th>Torsion (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.1 – 2.1</td>
<td>10</td>
<td>1.7 – 2.2</td>
<td>10</td>
<td>0.9 – 1.3</td>
</tr>
<tr>
<td>20</td>
<td>2.8 – 3.8</td>
<td>15</td>
<td>2.5 – 3.0</td>
<td>15</td>
<td>1.4 – 2.0</td>
</tr>
<tr>
<td>30</td>
<td>4.1 – 5.1</td>
<td>20</td>
<td>3.4 – 3.9</td>
<td>20</td>
<td>2.0 – 2.6</td>
</tr>
</tbody>
</table>

11.3 SHOULDER CALIBRATION (S572.214)

A. Shoulder Assembly

The shoulder assembly for this test consists of the torso assembly (drawing 020-4500) with string pot assembly (drawing SA572-S38 or SA572-S39) installed.
B. Requirement

When the center of the shoulder is impacted laterally by a test probe conforming to 572.219, at 3.6 ± 0.1 m/s (11.8 ± 0.3 ft/s), according to the test procedure in paragraph (c) of this section it shall have the following characteristics:

(1) Maximum lateral shoulder displacement (compression) relative to the spine, measured with the string potentiometer assembly (drawing SA572-S38 or SA572-S39), must not be less than 17.0 mm (0.67 in) and not more than 22.0 mm (0.89 in). The peak force of the impact probe shall have a value between 1123 N (252.5 lbf) and 1437 N (323.1 lbf).

(2) The force shall be calculated by the product of the impactor mass and its measured deceleration.

C. Procedure

(1) The dummy is clothed in the Q3s suit (drawing 020-8001). No additional clothing or shoes are placed on the dummy.

(2) Soak the dummy in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity from 10 to 70 percent for at least four hours prior to a test.

(3) The shoulder test is carried out in the direction opposing the primary load vector of the ensuing full-scale test for which the dummy is being qualified. A left shoulder test set-up that is used to qualify the dummy for an ensuing full scale left side impact is depicted in Figure 16. A right shoulder set-up would be a mirror image of that shown in Figure 16.

(4) Seat the dummy on the qualification bench described in Figure 5, the seat pan and seat back surfaces of which are covered with thin sheets of PTFE (Teflon) (nominal stock thickness: 2 to 3 mm) along the impact side of the bench.

(5) Position the dummy on the bench as shown in Figure 16, with the ribs contacting the seat back oriented 24.6 degrees relative to vertical, the legs extended forward along the seat pan oriented 21.6 degrees relative to horizontal with the knees spaced 40 mm (1.57 in) apart. Position the arms so that the upper arms are parallel to the seat back (±2 degrees) and the lower arms are parallel to the dummy's sagittal plane and perpendicular to the upper arms. Move the elbows inward (medially) until initial contact occurs between the sleeve and the portion of the suit covering the thorax.
while maintaining the relationships between the arms, seat back, and sagittal plane.

(6) The target point of the impact is a point on the shoulder that is 15 mm (0.59 in) above and perpendicular to the midpoint of a line connecting the centers of the bolt heads of the two lower bolts (part #5000010) that connect the upper arm assembly (020-9750) to the shoulder ball retaining ring (020-3533).

(7) Impact the shoulder with the test probe so that at the moment of contact the probe’s longitudinal centerline should be horizontal (±1 degree), and the centerline of the probe should be within 2 mm (0.08 in) of the target point.

(8) Guide the test probe during impact so that there is no significant lateral, vertical, or rotational movement.

(9) No suspension hardware, suspension cables, or any other attachments to the probe, including the velocity vane, shall contact the dummy during the test.

11.4 THORAX WITH ARM CALIBRATION (S572.215)

A. Thorax Assembly

The thorax assembly for this test consists of the torso assembly (drawing 020-4500) with an IR-TRACC (drawing SA572-S37) installed.

B. Requirement

The thorax of a completely assembled dummy (drawing 020-0100) shall be impacted laterally by a test probe at 5.0 ± 0.1 m/s (16.4 ± 0.3 ft/s) according to the test procedure in section 14 to meet the following requirements:

(1) Maximum lateral thorax displacement (compression) relative to the spine, measured with the IR-TRACC and processed as set out in the PADI (incorporated by reference, see 572.210), shall have a value between 22.5 mm (0.89 in) and 27.5 mm (1.08 in). The peak force, occurring after 5 ms, shall have a value between 1360 N (305.7 lbf) and 1695 N (381.1 lbf).

(2) The force shall be calculated by the product of the impactor probe mass and its measured deceleration.

(3) Time zero is defined as the time of contact between the impact probe and the arm. All channels should be at a zero level at this point.
C. Procedure

(1) The dummy is clothed in the Q3s suit (drawing 020-8001). No additional clothing or shoes are placed on the dummy.

(2) Soak the dummy in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity from 10 to 70 percent for at least four hours prior to a test.

(3) The test is carried out in the direction opposing the primary load vector of the ensuing full-scale test for which the dummy is being qualified. A left thorax test set-up that is used to qualify the dummy for an ensuing full scale left side impact is depicted in Figure 17. A right thorax set-up would be a mirror image of that shown in Figure 17. Seat the dummy on the qualification bench described in Figure 5, the seat pan and seat back surfaces of which are covered with thin sheets of PTFE (Teflon) (nominal stock thickness: 2 to 3 mm) along the impact side of the bench.

(4) Position the dummy on the bench as shown in Figure 17, with the ribs contacting the seat back oriented 24.6 degrees relative to vertical, the legs extended forward along the seat pan oriented 21.6 degrees relative to horizontal with the knees spaced 40 mm (1.57 in) apart. On the non-impact side of the dummy, the long axis of the upper arm is positioned parallel to the seat back (±2 degrees). On the impact side, the upper arm is positioned such that the target point intersects its long axis. The long axis of the upper arm is defined by section line A-A in drawing 020-9750. Both lower arms are set perpendicular to the upper arms and parallel to the dummy’s sagittal plane. Move the elbows inward (medially) until initial contact occurs between the sleeve and the portion of the suit covering the thorax while maintaining the relationships between the arms, seat back, and sagittal plane.

(5) The target point of the impact is the point of intersection on the lateral aspect of the upper arm and a line projecting from the thorax of the dummy. The projecting line is horizontal, runs parallel to the coronal plane of the dummy, and passes through the midpoint of a line connecting the centers of the bolt heads of the two IR-TRACC mounting bolts. The projected line should intersect the upper arm within 2 mm of its long axis.

(6) Impact the arm with the test probe so that at the moment of contact the probe's longitudinal centerline should be horizontal (±1 degrees), and the centerline of the probe should be within 2 mm of the target point.

(7) Guide the test probe during impact so that there is no significant lateral, vertical, or rotational movement.
(8) No suspension hardware, suspension cables, or any other attachments to the probe, including the velocity vane, shall contact the dummy during the test.

11.5 THORAX WITHOUT ARM CALIBRATION (S572.216)

A. Assembly

The thorax assembly for this test consists of the torso assembly (drawing 020-4500) with IR-TRACC (drawing SA572-S37) installed.

B. Requirement

The thorax of a completely assembled dummy (drawing 020-0100) with the arm (drawing 020-9700 or 020-9800) on the impacted side removed shall be impacted laterally by a test probe conforming to § 572.219 at 3.3 ± 0.1 m/s (10.8 ± 0.3 ft/s) according to the test procedure in paragraph (c) of this section and meet the following requirements:

(1) Maximum lateral thorax displacement (compression) relative to the spine, measured with the IR-TRACC (drawing SA572-S37) and processed as set out in the PADI (incorporated by reference, see 572.210), shall have a value between 24.5 mm (0.96 in) and 30.5 mm (1.20 in). The peak force, measured by the impact probe, shall have a value between 610 N (137.1 lbf) and 754 N (169.5 lbf).

(2) The force shall be calculated by the product of the impactor mass and its measured deceleration.

C. Procedure

(1) The dummy is clothed in the Q3s suit (drawing 020-8001). No additional clothing or shoes are placed on the dummy.

(2) Soak the dummy in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity from 10 to 70 percent for at least four hours prior to a test.

(3) The test is carried out in the direction opposing the primary load vector of the ensuing full-scale test for which the dummy is being qualified. A left thorax test set-up that is used to qualify the dummy for an ensuing full scale left side impact is depicted in Figure 18. A right thorax set-up would be a mirror image of that shown in Figure 18. Seat the dummy on the qualification bench described in Figure 5, the seat pan and seat back surfaces of which are covered with thin sheets of PTFE (Teflon) (nominal stock thickness: 2 to 3 mm) along the impact side of the bench.
(4) Position the dummy on the bench as shown in Figure 18, with the ribs making contact with the seat back oriented 24.6 degrees relative to vertical, the legs extended forward along the seat pan oriented 21.6 degrees relative to horizontal with the knees spaced 40 mm (1.57 in) apart, and the arm on the non-impacted side positioned so that the upper arm is parallel (±2 degrees) to the seat back and the lower arm perpendicular to the upper arm.

(5) The target point of the impact is the midpoint of a line between the centers of the bolt heads of the two IR-TRACC mounting bolts.

(6) Impact the thorax with the test probe so that at the moment of contact the probe’s longitudinal centerline should be horizontal (±1 degrees), and the centerline of the probe should be within 2 mm of the target point.

(7) Guide the test probe during impact so that there is no significant lateral, vertical, or rotational movement.

(8) No suspension hardware, suspension cables, or any other attachments to the probe, including the velocity vane, shall contact the dummy during the test.

11.6 LUMBAR SPINE CALIBRATION (S572.217)

A. Assembly

The lumbar spine and headform assembly for the fore-aft lumbar flexion and lateral lumbar flexion qualification tests, as shown in Figures 19 and 20, consists of the headform (drawing 020-9050, sheet 2) with angular rate sensor installed (drawing SA572-S58), six-channel neck/lumbar load cell installed (drawing SA572-S8), lumbar spine assembly (drawing 020-6000), lumbar interface plate (drawing 020-9062) and pendulum interface plate (drawing 020-9051) with angular rate sensor installed (drawing SA572-S58).

11.6.1 Fore-Aft Lumbar Flexion Qualification

A. Requirement

When lumbar spine and headform assembly is tested according to the test procedure of this section, it shall have the following characteristics:

(1) Plane D, referenced in figure 19, shall rotate in the direction of pre-impact flight with respect to the pendulum’s longitudinal centerline between 47.0 degrees and 58.5 degrees. During the time interval while the rotation is
within these angles, the peak moment measured by the neck/lumbar transducer (drawing SA572-S8) shall have a value between 78.2 N-m (57.5 ft-lb) and 96.2 N-m (71.0 ft-lb).

(2) The decaying headform rotation vs. time curve shall cross the zero angle with respect to its initial position at time of impact relative to the pendulum centerline between 49 to 59 ms after the time the peak rotation value is reached.

(3) All instrumentation data channels are defined to be zero when the longitudinal centerline of the lumbar spine and pendulum are parallel.

(4) The headform rotation shall be calculated by the following formula with the integration beginning at time zero:

\[
\text{Headform rotation (deg)} = \int [(\text{Headform Angular Rate})_y - (\text{Pendulum Angular Rate})_y] \, dt
\]

(5) (Headform Angular Rate)_y is the angular rate about the y-axis in deg/sec measured on the headform (drawing 020-9050, sheet 2), and (Pendulum Angular Rate)_y is the angular rate about the y-axis in deg/sec measured on the pendulum interface plate (drawing 020-9051).

B. Procedure

(1) Soak the lumbar spine assembly in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity between 10 and 70 percent for at least four hours prior to a test.

(2) Mount the lumbar spine and headform assembly on the pendulum described Figure 15 so that the midsagittal plane of the headform is vertical and coincides with the plane of motion of the pendulum, and with the lumbar spine placement such that the front side of the lumbar spine is closest to the honeycomb material.

(3) Release the pendulum and allow it to fall freely from a height to achieve an impact velocity of 4.4 ± 0.1 m/s (14.4 ± 0.3 ft/s), measured by an accelerometer mounted on the pendulum as shown in Figure 15 at time zero.

(4) Stop the pendulum from the initial velocity with an acceleration vs. time pulse that meets the velocity change as specified in Table 3 below. Integrate the pendulum accelerometer data channel to obtain the velocity vs. time curve beginning at time zero.

(5) Time zero is defined as the time of initial contact between the pendulum striker plate and the honeycomb material.
11.6.2 Lateral Lumbar Flexion Qualification

A. Requirement

When lumbar spine and headform assembly is tested according to the test procedure of this section, it shall have the following characteristics:

(1) Plane D, referenced in Figure 20, shall rotate in the direction of pre-impact flight with respect to the pendulum’s longitudinal centerline between 46.1 degrees and 58.2 degrees. During the time interval while the rotation is within these angles, the peak moment measured by the neck/lumbar transducer (drawing SA572-S8) shall have a value between 79.4 N-m (58.6 ft-lb) and 98.1 N-m (72.4 ft-lb).

(2) The decaying headform rotation vs. time curve shall cross the zero angle with respect to its initial position at time of impact relative to the pendulum centerline between 48 to 59 ms after the time the peak rotation value is reached.

(3) All instrumentation data channels are defined to be zero when the longitudinal centerline of the lumbar spine and pendulum are parallel.

(4) The headform rotation shall be calculated by the following formula with the integration beginning at time zero:

\[
\text{Headform rotation (deg)} = \int [(\text{Headform Angular Rate})_y - (\text{Pendulum Angular Rate})_y] \, dt
\]

(5) (Headform Angular Rate)_y is the angular rate about the y-axis in deg/sec measured on the headform, and (Pendulum Angular Rate)_y is the angular rate about the y-axis in deg/sec measured on the pendulum interface plate (drawing 020-9051).

B. Procedure

(1) Soak the lumbar spine assembly in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity between 10 and 70 percent for at least four hours prior to a test.

(2) The test is carried out in the direction opposing the primary load vector of the ensuing full-scale test for which the dummy is being qualified. A right flexion test set-up that is used to qualify the dummy for an ensuing a full-scale right-side impact is depicted in Figure 20. A left flexion test set-up would be depicted by a mirror image of all components beneath the pendulum interface plate in Figure 20.
(3) Mount the lumbar spine and headform assembly on the pendulum described in Figure 15 so that the midsagittal plane of the headform is vertical and perpendicular to the direction of motion of the pendulum, and with the lumbar spine placement such that the right (or left) side of the lumbar spine is closest to the honeycomb material.

(4) Release the pendulum and allow it to fall freely from a height to achieve an impact velocity of 4.4 ± 0.1 m/s (14.4 ± 0.3 ft/s), measured by an accelerometer mounted on the pendulum as shown in Figure 15 at time zero.

(5) Stop the pendulum from the initial velocity with an acceleration vs. time pulse that meets the velocity change as specified in Table 3 below. Integrate the pendulum accelerometer data channel to obtain the velocity vs. time curve beginning at time zero.

(6) Time zero is defined as the time of initial contact between the pendulum striker plate and the honeycomb material.

TABLE 3. LUMBAR ASSEMBLY PENDULUM VELOCITY

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>Fore-Aft Flexion (m/s)</th>
<th>Lateral Flexion (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.3 – 1.7</td>
<td>1.3 – 1.7</td>
</tr>
<tr>
<td>20</td>
<td>2.7 – 3.7</td>
<td>2.7 – 3.7</td>
</tr>
<tr>
<td>30</td>
<td>4.1 – 4.9</td>
<td>4.0 – 4.8</td>
</tr>
</tbody>
</table>
A. Assembly

The pelvis assembly (drawing 020-7500) for this test may include either a uniaxial pubic load cell (drawing SA572-S7) or a pubic load cell structural replacement (drawing 020-7150) installed on the non-impact side of the pelvis.

B. Requirement

When the center of the pelvis of a completely assembled dummy is impacted laterally by a test probe conforming to 572.219 at 4.0 ± 0.1 m/s (13.1 ± 0.3 ft/s) according to the test procedure, the follow conditions must be met:

(1) The calculated peak force, measured by the impact probe, shall have a value between 1587 N (356.8 lbf) and 1901 N (427.4 lbf).

(2) The force shall be calculated by the product of the impactor mass and its measured deceleration.

C. Procedure

(1) The dummy is clothed in the Q3s suit. No additional clothing or shoes are placed on the dummy.

(2) Soak the dummy in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity from 10 to 70 percent for at least four hours prior to a test.

(3) The pelvis test is carried out in the direction opposing the primary load vector of the ensuing full-scale test for which the dummy is being qualified. A left pelvis test set-up that is used to qualify the dummy for an ensuing full scale left side impact is depicted in Figure 21. A right pelvis test set-up would be a mirror image of that shown in Figure 21.

(4) Seat the dummy on the qualification bench described in Figure 5, the seat pan and seat back surfaces of which are covered with thin sheets of PTFE (Teflon) (nominal stock thickness: 2 to 3 mm) along the impact side of the bench.

(5) Position the dummy on the bench as shown in Figure 21, with the ribs contacting the seat back oriented 24.6 degrees relative to vertical, the legs extended forward along the seat pan oriented 21.6 degrees relative to horizontal with the knees spaced 40 mm (1.6 in) apart. The arms should be positioned so that the arm on the non-impacted side is parallel to the
seat back with the lower arm perpendicular to the upper arm, and the arm on the impacted side is positioned upwards away from the pelvis.

(6) Establish the impact point at the center of the pelvis so that the impact point of the longitudinal centerline of the probe is located 185 mm (7.3 in) from the center of the knee pivot screw (part #020-9008) and centered vertically on the femur.

(7) Impact the pelvis with the test probe so that at the moment of contact the probe’s longitudinal centerline should be horizontal (±1 degrees), and the centerline of the probe should be within 2 mm (0.08 in) of the center of the pelvis.

(8) Guide the test probe during impact so that there is no significant lateral, vertical, or rotational movement.

(9) No suspension hardware, suspension cables, or any other attachments to the probe, including the velocity vane, shall contact the dummy during the test.

12. POST TEST REQUIREMENTS

The contractor shall verify all instrumentation and check data sheets and photographs. Make sure data is recorded in all data blocks on every performance calibration test data sheet.

13. REPORTS

13.1 APPARENT NONCONFORMANCE

During the posttest calibration verification, any indication of apparent nonconformance to the requirements of Part 572 shall be communicated by telephone to the COR within 24 hours with written notification mailed within 48 hours (Saturdays and Sundays excluded). Written notification shall be submitted with a copy of the particular test data sheet(s) and preliminary data plot(s).

In the event of an apparent nonconformance, a posttest calibration check of some critically sensitive test equipment and instrumentation may be required for verification of accuracy. The necessity for the calibration shall be at the COR’s discretion and shall be performed without additional costs to the OVSC.
13.2 **FINAL PERFORMANCE CALIBRATION REPORTS**

A report containing the pre-test calibration and posttest calibration verification data for each Part 572, Subpart P dummy used in the test shall be submitted with the compliance final test report if requested by the COR.

Contractors are required to PROOFREAD all Final Test Reports before submittal to the COR. The OVSC will not act as a report quality control office for contractors. Reports containing a significant number of errors will be returned to the contractor for correction, and a "hold" will be placed on invoice payment for the particular test.

13.2.1 Requirements

Performance calibration report Table of Contents shall include the following:

A. Section 1 — Purpose of Calibration Test

B. Section 2 — Calibration Data Summary

C. Section 3 — Test Data

D. Section 4 — Test Equipment List and Calibration Information

E. Section 5 — Photographs (if applicable)

The test data for each dummy will be presented in separate sections. Each section shall contain a title page, test results summary and the test data. The title page shall include the dummy's serial number and the manufacturer's name. It will also indicate whether the calibration data is pre or posttest. The test results sheets will provide a summary of each test and describe any damage, failures and/or corrective action taken. The test data shall include the pass/fail data sheets, the time histories for each data channel used to determine the pass or fail status, and instrumentation calibration data sheets.
13.2.2 Report Cover Format

The information required on the cover follows:

A. Final Report Title and Subtitle such as

 Q3s 3-YEAR-OLD CHILD TEST DUMMY CALIBRATION IN SUPPORT OF FMVSS 213A CHILD RESTRAINT SYSTEM SIDE IMPACT TEST(S)

B. DOT symbol, placed between items B and C

C. Contractor's Name and Address such as

 COMPLIANCE TESTING LABORATORIES, INC.
 4335 West Dearborn Street
 Detroit, Michigan 48090

D. Date of Final Performance Calibration Report completion

E. The sponsoring agency's name and address as follows

 U. S. DEPARTMENT OF TRANSPORTATION
 National Highway Traffic Safety Administration
 Enforcement
 Office of Vehicle Safety Compliance
 Mail Code: NVS-220, W43-481
 1200 New Jersey Ave., SE
 Washington, DC 20590
14. DATA SHEETS

14.1 DUMMY DAMAGE CHECKLIST

DATA SHEET 1
DUMMY DAMAGE CHECKLIST

Dummy Serial Number _____________ Test Date _____________

Technician ___________________________

This check sheet is completed as part of the posttest calibration verification.

__Perform general cleaning.

<table>
<thead>
<tr>
<th>Dummy Item</th>
<th>Inspect for</th>
<th>Comments</th>
<th>Damaged</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer Skin</td>
<td>Gashes, Rips, Cracks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head</td>
<td>Ballast secure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General appearance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck & Lumbar</td>
<td>Deformed or torn rubber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper and lower bracket firmly attached</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Looseness at the condyle joint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bending or fraying in tension cable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Torso</td>
<td>Broken or cracked ribcage assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Broken or bent IR-TRACC bracket</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excessive wear on shoulder ball joint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Over worn shoulder plunger screw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rips or cracking in molded shoulder assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Torso</td>
<td>Broken of cracked pelvis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Broken or bent pubic load cell assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excessive wear on hip ball joint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arms & Legs</td>
<td>Broken or cracked joints</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal movement and adjustment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If upon visual examination, damage is apparent in any of these areas, the appropriate engineer or engineering technician is to be consulted for a decision on repair or replacement of parts.

Repair or Replacement approved by:

_____________________________ ______________
Signature Date

Describe the repair or replacement of parts:

_____________________________ ______________
Signature Date

Checked by

_____________________________ ______________
Signature Date
14.2 EXTERNAL MEASUREMENTS CHECKLIST

DATA SHEET 2
EXTERNAL MEASUREMENTS
(See the PADI, pages 119 to 128)

Dummy Serial Number _______________ Test Date _______________

Technician __________________________

__Pretest calibration
__Posttest calibration verification

__1. Assemble the dummy according to the procedures defined in the PADI. Assure that the neck and lumbar cables are set to the proper torque. These dimensions shall be checked without any instrumentation cabling coming from the rear of the dummy as this bundle may affect the measurements.

__2. Remove the dummy's jacket.

3. **Stature Measurements:**

__3a. Lay the dummy on its back on a stature measurement fixture as shown in Figure 7.
__3b. Rest the heels on the heel spacer.
__3c. Align the upper torso cable guide so that it fully contacts the cable spacer guide. Note that this may compress the buttocks.
__3d. Place the head on the head spacer.
__3e. The upper and lower legs should be parallel. The bottom of the foot should be positioned flat against the foot board.
__3f. **Stature (A):** Measure the height from the bottom of the feet to top of head as shown in Dimension A, Figure 7. A right-angle plate resting on the base plate and positioned against the top of the head may aid in obtaining the measurement.

4. **Anthropometry Measurements:**

__4a. Seat the dummy on a flat, rigid, smooth, clean, dry, horizontal surface. The seating surface must be at least 360 mm (14.2 in) wide and 200 mm (7.87 in) deep, with a vertical section at least 360 mm (14.2 in) wide and 600 mm (23.6 in) high attached to the rear of the seating fixture. In addition, a 35 mm thick head location block, a 10 mm thick thorax location block, and a 9.5 mm thick pelvis location block are mounted to the seat as indicated in Figure 9.
__4b. Secure the seat to an appropriate surface.
__4c. Seat the dummy so that the dummy's lateral axis is parallel to the seat back.
__4d. Position the spine box vertically so that the cable guide is in full contact with the cable guide spacer block.
__4e. The head should rest against the head spacer, with the dummy looking down at an angle of 27° (see Dimension BB in Figure 7). Tape can be used to aid in positioning if necessary.
4f. Align the upper legs so that a line between the knee and hip pivots is horizontal.
4g. Position the lower legs 90° from the upper legs. The bottom of the feet should be parallel to the seat pan.
4h. The upper arms are positioned vertically with elbows down; the lower arms are positioned 90° from the upper arms with hands forward. The lower arms are parallel to both the seat pan and the midsagittal plane of the dummy.
4i. Tape may be used to aid in positioning the dummy in any of the steps above.

5. Record the dimensions listed in following table.

_____________________________ ______________
Signature Date
EXTERNAL DIMENSIONS

Q3s SIDE IMPACT TEST DUMMY, PART 572, SUBPART W EXTERNAL DIMENSIONS

<table>
<thead>
<tr>
<th>DIM.</th>
<th>DESCRIPTION</th>
<th>DETAILS</th>
<th>ASSEMBLY DIMENSION (mm)</th>
<th>ACTUAL MEASUREMENT (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Stature</td>
<td>Top of head to bottom of feet when measured in stature fixture</td>
<td>38.7</td>
<td>0.6</td>
</tr>
<tr>
<td>B</td>
<td>Total Sitting Height</td>
<td>Seat surface to highest point on top of head when back of head is in contact with spacer block (G)</td>
<td>21.9</td>
<td>0.4</td>
</tr>
<tr>
<td>C</td>
<td>Shoulder Height Sitting</td>
<td>Top of upper arm above seat surface</td>
<td>13.7</td>
<td>0.4</td>
</tr>
<tr>
<td>D</td>
<td>Thigh Clearance</td>
<td>Thigh height at highest point above seat</td>
<td>3.3</td>
<td>0.3</td>
</tr>
<tr>
<td>E</td>
<td>Shoulder to Elbow Length</td>
<td>Top of upper arm at shoulder to bottom of upper arm at elbow</td>
<td>7.3</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>Elbow to Fingertip Length</td>
<td>Back of upper arm to front of fingertip parallel to long axis of lower arm</td>
<td>9.6</td>
<td>0.4</td>
</tr>
<tr>
<td>G</td>
<td>Head Back to Seat Back</td>
<td>Measurement set by fixture</td>
<td>1.4</td>
<td>0.1</td>
</tr>
<tr>
<td>H</td>
<td>Spine Box Back to Seat Back Line</td>
<td>Measurement set by fixture</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>I</td>
<td>Knee to seat back Line Seated</td>
<td>Front of knee in line with knee pivot centerline to seat back</td>
<td>12.0</td>
<td>0.5</td>
</tr>
<tr>
<td>J</td>
<td>Knee Height Seated</td>
<td>Top of knee to foot plate measured in line with knee pivot centerline</td>
<td>11.1</td>
<td>0.5</td>
</tr>
<tr>
<td>K</td>
<td>Chest Depth Upper</td>
<td>Top front point of rib cage molding to seat back</td>
<td>5.9</td>
<td>0.3</td>
</tr>
<tr>
<td>L</td>
<td>Abdominal Depth</td>
<td>Forward most point of abdomen to seat back parallel to the seat pan</td>
<td>6.7</td>
<td>0.3</td>
</tr>
<tr>
<td>M</td>
<td>Hip Breadth Sitting</td>
<td>Width of pelvis across the femurs in line with femur centerlines</td>
<td>8.0</td>
<td>0.3</td>
</tr>
<tr>
<td>N</td>
<td>Pelvis Height Above Seat</td>
<td>Measurement set by fixture</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>O</td>
<td>Foot Length</td>
<td>Length of foot from toes to heel parallel to long axis of the foot</td>
<td>5.8</td>
<td>0.3</td>
</tr>
<tr>
<td>P</td>
<td>Foot Width</td>
<td>Width of foot at widest point perpendicular to long axis of foot</td>
<td>2.4</td>
<td>0.3</td>
</tr>
<tr>
<td>DIM.</td>
<td>DESCRIPTION</td>
<td>DETAILS</td>
<td>ASSEMBLY DIMENSION (mm)</td>
<td>ACTUAL MEASUREMENT (mm)</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Q</td>
<td>Head Width</td>
<td>Width of head at widest point</td>
<td>5.4</td>
<td>0.2</td>
</tr>
<tr>
<td>R</td>
<td>Head Length</td>
<td>Length of head from front to rearmost projection of skull cap along reference line X</td>
<td>7.0</td>
<td>0.3</td>
</tr>
<tr>
<td>S</td>
<td>Waist Width Sitting</td>
<td>Width across waist at widest point at top of pelvis</td>
<td>7.3</td>
<td>0.3</td>
</tr>
<tr>
<td>T</td>
<td>Shoulder Width</td>
<td>Width across arms at shoulder pivot centerline</td>
<td>9.7</td>
<td>0.4</td>
</tr>
<tr>
<td>U</td>
<td>Head Circumference</td>
<td>Circumference of head at head length measurement location</td>
<td>19.6</td>
<td>0.4</td>
</tr>
<tr>
<td>V</td>
<td>Chest Circumference</td>
<td>Circumference of chest at center of the top rib at the reference location for chest circumference</td>
<td>20.8</td>
<td>0.5</td>
</tr>
<tr>
<td>W</td>
<td>Waist Circumference</td>
<td>Circumference of chest at center of the top rib at the reference location for chest circumference</td>
<td>21.2</td>
<td>0.5</td>
</tr>
<tr>
<td>X</td>
<td>Head reference Line</td>
<td>Distance below crown of head for length and circumference measurement</td>
<td>3.2</td>
<td>-</td>
</tr>
<tr>
<td>Y</td>
<td>Reference Location for Chest Circumference</td>
<td>Height above seat for chest circumference measurement</td>
<td>9.7</td>
<td>-</td>
</tr>
<tr>
<td>Z</td>
<td>Reference Location for Waist Circumference</td>
<td>Height above seat for waist circumference measurement</td>
<td>3.5</td>
<td>-</td>
</tr>
<tr>
<td>AA</td>
<td>Head Back-to-Back Line Standing</td>
<td>Set by fixture</td>
<td>1.1</td>
<td>0.1</td>
</tr>
<tr>
<td>BB</td>
<td>Head Reference Line Angle</td>
<td>Measured with protractor and set to correct angle</td>
<td>27°</td>
<td>-</td>
</tr>
</tbody>
</table>
FIGURE 7. Q3s EXTERNAL DIMENSIONS
FIGURE 8. STATURE MEASUREMENT FIXTURE
FIGURE 9. ANTHROPOMETRY MEASUREMENT FIXTURE
14.3 HEAD CALIBRATION CHECKLIST

DATA SHEET 3
HEAD DROP TESTS (572.212)

Dummy Serial Number _____________ Test Date _____________

Technician ___________________________

___ Pretest calibration
___ Posttest calibration verification

Test attempt no. ____ (when successive head drops are necessary)

___ 1. It has been at least 2 hours since the last head drop. (572.212(c)(5))

___ 2. The head assembly for these tests consists of the complete head (drawing 020-1200) with head accelerometer assembly (drawing 020-1013A), and a half mass simulated upper neck load cell (drawing 020-1050).

___ 3. Accelerometers and their respective mounts are smooth and clean.

___ 4. The accelerometer mounting block is mounted to the accelerometer bracket (two M2.5-0.45 x 16 SCHS) and torqued to 0.6 N-m (5 ft-lb).

___ 5. The three head accelerometer bracket screws (two M3-0.5 x 10 SHCS and one M3-0.5 x 40 SHCS) are torqued to 1.1 N-m (10 in-lb).

___ 6. The data acquisition system, including transducers, conforms to the requirements of SAE Recommended Practice J211. (572.219(c))

___ 7. The head assembly soaked at a temperature between 20.6 and 22.2°C (69 and 72 °F) and a relative humidity from 10% to 70% for a period of at least four (4) hours prior to a test. (572.212(c)(1))

 Record temperature ______
 Record humidity ______

___ 8. Visually inspect the head skin for cracks, cuts, abrasions, etc. Repair or replace the head skin if the damaged area is more than superficial. Note: If the damage resulted from the low-risk deployment test in which the dummy was an occupant, the damaged area is to be documented with photography and the posttest calibration verification testing completed before any replacement or repairs are made.

 Record findings and actions: _______________________________________

___ 9. Clean the impact surface of the skin and the impact surface of the fixture with isopropyl alcohol, trichloroethane or equivalent prior to the test. (572.212(c)(2))
10. Frontal Head Qualification

__10a. Suspend and orient the head assembly with the forehead facing the impact surface as shown in Figure 10. The lowest point on the forehead must be 376.0 ± 1.0 mm (14.8 ± 0.04 in) from the impact surface.

__10b. Adjust the head angle so that the upper neck load cell simulator is 28 ± 2 degrees forward from vertical while assuring that the head remains horizontal laterally.

(572.212(c)(i)
Record the actual distance ______

__10c. The impact surface is clean and dry and has a micro finish in the range of 0.2 microns to 2.0 microns (RMS). (572.212(c)(4))

__10d. The impact surface is a flat horizontal steel plate 50.8 mm (2 inches) thick and 610 mm (24 inches) square. (572.212(c)(4))

__10e. Drop the head assembly from a height of 376.0 ± 1.0 mm (14.8 ± 0.04 inches) by a means that ensures a smooth, instant release onto the impact surface.

(572.212(b)(1)) & 572.212(c)(4))

__10f. Plot the x, y, z and resultant acceleration data.

__10g. Record results in Table 5.

11. Lateral Head Qualification

__11a. Suspend and orient the head assembly so that the head is dropped on the aspect that opposes the primary load vector of the ensuing full-scale test for which the dummy is being qualified, as shown in Figure 11. The lowest point on the impact side of the head must be 200.0 ± 1.0 mm (7.87 ± 0.04 in) from the impact surface.

__11b Adjust the head angle so that the head base plane measured from the base surface of the upper neck load cell simulator is 35 ± 2 degrees forward from the vertical while assuring that the head remains horizontal in the fore-aft direction.

Record the actual distance ______

__11c. The impact surface is clean and dry and has a micro finish in the range of 0.2 microns to 2.0 microns (RMS). (572.212(c)(4))

__11d. The impact surface is a flat horizontal steel plate 50.8 mm (2 inches) thick and 610 mm (24 inches) square. (572.212(c)(4))

__11e. Drop the head assembly from a height of 200.0 ± 1.0 mm (7.87 ± 0.04 in) by a means that ensures a smooth, instant release onto the impact surface.

(572.212(b)(2)) & 572.212(c)(4))

__11f. Plot the x, y, z and resultant acceleration data.

__11g. Record results in Table 5.

__11h. Repeat test for the opposite side (left or right).
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal Drop</td>
<td></td>
<td></td>
<td>Left Side Lateral Drop</td>
<td></td>
<td></td>
<td>Right Side Lateral Drop</td>
</tr>
<tr>
<td>Peak Resultant Acceleration</td>
<td>255 ≤ x ≤ 300 (g)</td>
<td>114 ≤ x ≤ 140 (g)</td>
<td>114 ≤ x ≤ 140 (g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resultant vs. Time history curve</td>
<td>Unimodal</td>
<td>Unimodal</td>
<td>Unimodal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscillations After the Main Pulse</td>
<td>< 10% of the Peak Resultant</td>
<td>< 10% of the Peak Resultant</td>
<td>< 10% of the Peak Resultant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross Acceleration</td>
<td>y-axis ≤ 15 g</td>
<td>x-axis ≤ 15 g</td>
<td>x-axis ≤ 15 g</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HEAD DROP TEST SET-UP SPECIFICATIONS - FRONTAL

FIGURE 10. FRONTAL HEAD DROP TEST SET-UP SPECIFICATIONS
FIGURE 11. LATERAL HEAD DROP TEST SET-UP SPECIFICATIONS
14.4 NECK CALIBRATION CHECKLISTS

DATA SHEET 4
FORE-AFT NECK FLEXION TEST (572.213(b)(1))

Dummy Serial Number _______________ Test Date _______________

Technician ___________________________

__Pretest calibration
__Posttest calibration verification

Test attempt no. ____ (when successive flexion tests are necessary)

_1. It has been at least 30 minutes since the last neck test.
_2. The components required for the fore-aft neck flexion tests include the neck and headform assembly shown in Figure 12. This assembly consists of the headform (drawing 020-9050, sheet 1) with angular rate sensor installed (drawing SA572-S58), six-channel neck/lumbar load cell (drawing SA572-S8), neck assembly (drawing 020-2400), neck/torso interface plate (drawing 020-9056) and pendulum interface plate (drawing 020-9051) with angular rate sensor installed (drawing SA572-S58). (572.213(a)(1))
__3. The assembly has soaked in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity between 10 and 70 percent for at least four hours prior to a test. (572.213(c)(1))
Record temperature ______
Record humidity ______
__4. Visually inspect neck assembly for cracks, cuts and separation of the rubber from the metal segments. Note: If the damage resulted from the low-risk deployment test, the damaged area is to be documented with photography and the posttest calibration verification testing completed before any replacement or repairs are made.
Record findings and actions: ___
__
__
__
_5. Torque the neck cable adjust nut (020-2421) on the neck cable (020-2415) to 0.2 Nm (2 in-lb).
__6. The data acquisition system, including transducers, conforms to the requirements of SAE Recommended Practice J211. (572.219(c))
__7. The test fixture pendulum conforms to the specifications in Figure 15. (572.33(c)(3))
__8. Mount the neck and headform assembly so that the midsagittal plane of the headform is vertical and coincides with the plane of motion of the pendulum, and with the neck placement such that the front side of the neck is closest to the honeycomb material as shown in Figure 12. (572.213(c)(2)(i))
__9. Install the transducers or other devices for measuring the "D" plane rotation with respect to the pendulum longitudinal centerline. Note: Plane "D" is the top horizontal
surface of the neck load cell. These measurement devices should be designed to minimize their influence upon the performance of the head-neck assembly.

11. Plane D is perpendicular ± 1° to the centerline of the pendulum.

12. Set the instrumentation so that the moment and rotation are defined to be zero when the longitudinal centerline of the neck and pendulum are parallel. (572.213(b)(1)(iii))

13. Release the pendulum and allow it to fall freely from a height to achieve an impact velocity of 4.7 ± 0.1 m/s (15.4 ± 0.3 ft/s), measured by an accelerometer mounted on the pendulum at time zero. (572.213(c)(3)(i))

14. Stop the pendulum from the initial velocity with an acceleration vs. time pulse that meets the velocity change as specified in Table 6. Integrate the pendulum accelerometer data channel to obtain the velocity vs. time curve beginning at time zero. (572.213(c)(3)(ii))

15. Time zero is defined as the time of initial contact between the pendulum striker plate and the honeycomb material. (572.213(c)(3)(iii))

16. Record results in Table 6:

| TABLE 5. FORE-AFT NECK CALIBRATION RESULTS (572.213(b)(1)) & 572.213(c)(3) |
|---|---------------------------------|------|
| Parameter | Specification | Result |
| Pendulum Impact Speed | 4.6 m/s ≤ speed ≤ 4.8 m/s | |
| Pendulum ΔV with respect to impact speed @ 10 ms | 1.1 m/s ≤ ΔV ≤ 2.1 m/s | |
| | @ 20 ms 2.8 m/s ≤ ΔV ≤ 3.8 m/s | |
| | @ 30 ms 4.1 m/s ≤ ΔV ≤ 5.1 m/s | |
| Plane D Rotation | Peak moment: 41.5 ≤ moment ≤ 50.7 N·m | _____ Nm @
| | During the rotation range: 69.5 ≤ angle ≤ 81.0 degrees | ____ degrees
| Negative Moment Decay | Time to decay to zero angle: 45 ≤ time ≤ 55 ms | |
FIGURE 12. NECK FORE-AFT TEST SET-UP SPECIFICATIONS
DATA SHEET 5
LATERAL NECK FLEXION TEST (572.213(b)(2))

Dummy Serial Number _________________ Test Date _________________

Technician ___________________________

__Pretest calibration
__Posttest calibration verification

Test attempt no. ____ (when successive flexion tests are necessary)

1. It has been at least 30 minutes since the last neck test.
2. The components required for the lateral neck flexion tests include the neck and headform assembly shown in Figure 13. This assembly consists of the headform (drawing 020-9050, sheet 1) with angular rate sensor installed (drawing SA572-S58), six-channel neck/lumbar load cell (drawing SA572-S8), neck assembly (drawing 020-2400), neck/torso interface plate (drawing 020-9056) and pendulum interface plate (drawing 020-9051) with angular rate sensor installed (drawing SA572-S58). (572.213(a)(1))
3. The assembly has soaked in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity between 10 and 70 percent for at least four hours prior to a test. (572.213(c)(1))
 Record temperature ______
 Record humidity ______

4. Visually inspect neck assembly for cracks, cuts and separation of the rubber from the metal segments. Note: If the damage resulted from the low-risk deployment test, the damaged area is to be documented with photography and the posttest calibration verification testing completed before any replacement or repairs are made.
 Record findings and actions: ___

5. Torque the neck cable adjust nut (020-2421) on the neck cable (020-2415) to 0.2 N-m (2 in-lb).
6. The data acquisition system, including transducers, conforms to the requirements of SAE Recommended Practice J211. (572.219(c))
7. The test fixture pendulum conforms to the specifications in Figure 15. (572.33(c)(3))
8. Mount the neck and headform assembly so that the midsagittal plane of the headform is vertical and coincides with the plane of motion of the pendulum, and with the neck placement such that the right (or left) side of the neck is closest to the honeycomb material as shown in Figure 13. (572.213(c)(2)(ii))
9. Install the transducers or other devices for measuring the "D" plane rotation with respect to the pendulum longitudinal centerline. Note: Plane "D" is the top horizontal surface of the neck load cell. These measurement devices should be designed to minimize their influence upon the performance of the head-neck assembly.
11. Plane D is perpendicular ± 1° to the centerline of the pendulum.
12. Set the instrumentation so that the moment and rotation are defined to be zero when the longitudinal centerline of the neck and pendulum are parallel. (572.213(b)(2)(iii))

13. Release the pendulum and allow it to fall freely from a height to achieve an impact velocity of $3.8 \pm 0.1 \text{ m/s (12.5} \pm 0.3 \text{ ft/s)}$, measured by an accelerometer mounted on the pendulum at time zero. (572.213(c)(3)(i))

14. Stop the pendulum from the initial velocity with an acceleration vs. time pulse that meets the velocity change as specified in Table 7. Integrate the pendulum accelerometer data channel to obtain the velocity vs. time curve beginning at time zero. (572.213(c)(3)(ii))

15. Time zero is defined as the time of initial contact between the pendulum striker plate and the honeycomb material. (572.213(c)(3)(iii))

16. Repeat for opposite side flexion (right or left).

17. Record results in Table 7:

TABLE 6. LATERAL NECK CALIBRATION RESULTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendulum Impact Speed</td>
<td>$3.7 \text{ m/s} \leq \text{speed} \leq 3.9 \text{ m/s}$</td>
<td></td>
</tr>
<tr>
<td>Pendulum ΔV</td>
<td>@ 10 ms $1.7 \text{ m/s} \leq \Delta V \leq 2.2 \text{ m/s}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>@ 15 ms $2.5 \text{ m/s} \leq \Delta V \leq 3.0 \text{ m/s}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>@ 20 ms $3.4 \text{ m/s} \leq \Delta V \leq 3.9 \text{ m/s}$</td>
<td></td>
</tr>
<tr>
<td>Plane D Rotation</td>
<td>Peak moment: $23.5 \leq \text{moment} \leq 32.0 \text{ N-m}$</td>
<td>$\text{Nm @ } _\text{degrees}$ $\text{Nm @ } _\text{degrees}$</td>
</tr>
<tr>
<td></td>
<td>During the rotation range: $76.5 \leq \text{angle} \leq 87.5 \text{ degrees}$</td>
<td></td>
</tr>
<tr>
<td>Negative Moment Decay</td>
<td>Time to decay to zero angle: $61 \leq \text{time} \leq 71 \text{ ms}$</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 13. NECK LATERAL TEST SET-UP SPECIFICATIONS
DATA SHEET 6
LATERAL NECK FLEXION TEST (572.213(b)(3))

Dummy Serial Number _____________ Test Date _____________

Technician ___________________________

__Pretest calibration
__Posttest calibration verification

Test attempt no. ____ (when successive flexion tests are necessary)

__1. It has been at least 30 minutes since the last neck test.
__2. The components required for the neck torsion tests include the neck assembly shown in Figure 14. This assembly consists of the neck twist fixture (drawing DL210-200) with rotary potentiometer installed (drawing SA572-S51), neck adaptor plate assembly (drawing DL210-220), neck assembly (drawing 020-2400), six-channel neck/lumbar load cell (drawing SA572-S8), and twist fixture end plate (drawing DL210-210).
__3. The assembly has soaked in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity between 10 and 70 percent for at least four hours prior to a test. (572.213(c)(1))
 Record temperature ______
 Record humidity ______
__4. Visually inspect neck assembly for cracks, cuts and separation of the rubber from the metal segments. Note: If the damage resulted from the low-risk deployment test, the damaged area is to be documented with photography and the posttest calibration verification testing completed before any replacement or repairs are made.
 Record findings and actions: ___

__5. Torque the neck cable adjust nut (020-2421) on the neck cable (020-2415) to 0.2 Nm (2 in-lb).
__6. The data acquisition system, including transducers, conforms to the requirements of SAE Recommended Practice J211. (572.219(c))
__7. The test fixture pendulum conforms to the specifications in Figure 15. (572.33(c)(3))
__8. Mount the neck assembly, defined in paragraph (a)(2) of this section, on the pendulum, as shown in Figure 14. (572.213(c)(2)(iii))
__9. Install the transducers or other devices for measuring the pendulum rotation with respect to the pendulum longitudinal centerline. These measurement devices should be designed to minimize their influence upon the performance of the head-neck assembly.
__10. All instrumentation data channels are defined to be zero when the zero pins are installed such that the neck is not in torsion. (572.213(b)(3)(iii))
11. Release the pendulum and allow it to fall freely from a height to achieve an impact velocity of 3.6 ± 0.1 m/s (11.8 ± 0.3 ft/s), measured by an accelerometer mounted on the pendulum at time zero. (572.213(c)(3)(iii))

12. Stop the pendulum from the initial velocity with an acceleration vs. time pulse that meets the velocity change as specified in Table 8. Integrate the pendulum accelerometer data channel to obtain the velocity vs. time curve beginning at time zero. (572.213(c)(3)(ii))

13. Time zero is defined as the time of initial contact between the pendulum striker plate and the honeycomb material. (572.213(c)(3)(iii))

14. Repeat for opposite side torsion (right or left).

15. Record results in Table 8:

TABLE 7. TORSION NECK CALIBRATION RESULTS

(572.213(b)(3)) & 572.213(c)(3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendulum Impact Speed</td>
<td>3.5 m/s ≤ speed ≤ 3.7 m/s</td>
<td></td>
</tr>
<tr>
<td>Pendulum ΔV with respect to impact speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ 10 ms</td>
<td>0.9 m/s ≤ ΔV ≤ 1.3 m/s</td>
<td></td>
</tr>
<tr>
<td>@ 15 ms</td>
<td>1.4 m/s ≤ ΔV ≤ 2.0 m/s</td>
<td></td>
</tr>
<tr>
<td>@ 20 ms</td>
<td>2.0 m/s ≤ ΔV ≤ 2.6 m/s</td>
<td></td>
</tr>
<tr>
<td>Pendulum Rotation</td>
<td>Peak moment: 8.0 ≤ moment ≤ 10.0 N-m</td>
<td>__ Nm @ ___ degrees</td>
</tr>
<tr>
<td></td>
<td>During the rotation range: 74.5 ≤ angle ≤ 91.0 degrees</td>
<td></td>
</tr>
<tr>
<td>Negative Moment Decay</td>
<td>Time to decay to zero angle: 85 ≤ time ≤ 102 ms</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 14. NECK TORSION TEST SET-UP SPECIFICATIONS
FIGURE 15. NECK CALIBRATION TEST PENDULUM SPECIFICATIONS

INERTIAL PROPERTIES OF PENDULUM, MOUNTING PLATE AND MOUNTING HARDWARE WITHOUT TEST SPECIMEN.
WEIGHT 29.57 kg (65.21 lbs)
MOMENT OF INERTIA 33.2 kg-m² (294 in.-lb-sec²) ABOUT PIVOT AXIS

CG OF PENDULUM APPARATUS WITHOUT TEST SPECIMEN

ACCELEROMETER

MOUNTING PLATE

PENDULUM STRIKER PLATE (SHARP EDGES)
76.2 x 152.4 x 9.5 mm
(3 x 6 x 3/8 in.)

ACCELEROMETER CENTERLINE

198.1 mm (7.8 in.)
4.8 mm (186 in.)
38.1 mm (1.5 in.)

ALUMINUM HONEYCOMB
HEXCEL 28.8 kg/m³
(1.8 lb/ft³) REF

BEFORE TESTING, PRESSURIZE THE HONEYCOMB MATERIAL WITH THE PENDULUM TO ASSURE THAT 90% TO 100% OF THE HONEYCOMB SURFACE IS CONTACTING THE PENDULUM STRIKER PLATE.
14.5 SHOULDER CALIBRATION CHECKLIST

DATA SHEET 7
SHOULDER IMPACT TESTS (572.214)

Dummy Serial Number ________________ Test Date ________________

Technician ___________________________

__Pretest calibration
__Posttest calibration verification

Test attempt no. ____ (when successive impact tests are necessary)

__1. It has been at least 30 minutes since the last shoulder test.
__2. The components required for the shoulder calibration tests consist of the torso assembly (drawing 020-4500) with string pot assembly (drawing SA572-S38 or SA572-S39) installed. (572.214(a))
__3. The assembly has soaked in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity between 10 and 70 percent for at least four hours prior to a test. (572.214(c)(2))
 Record temperature ______
 Record humidity ______
__4. The target point of the impact is a point on the shoulder that is 15 mm above and perpendicular to the midpoint of a line connecting the centers of the bolt heads of the two lower bolts (part #5000010) that connect the upper arm assembly (020-9750) to the shoulder ball retaining ring (020-3533). (572.214(c)(5))
__5. Cloth the dummy in the Q3s suit (drawing 020-8001). No additional clothing or shoes are placed on the dummy. (572.214(c)(1))
__6. Seat the dummy on the qualification bench described in Figure 5, the seat pan and seat back surfaces of which are covered with thin sheets of PTFE (Teflon) (nominal stock thickness: 2 to 3 mm) along the impact side of the bench. (572.214(c)(3))
__7. Position the dummy on the bench as shown in Figure 16 (572.214(c)(4))
 __7a. The ribs contact the seat back oriented 24.6 degrees relative to vertical
 __7b. The legs are extended forward along the seat pan oriented 21.6 degrees relative to horizontal
 __7c. The knees are spaced 40 mm (1.57 in) apart
 __7d. The upper arms are parallel to the seat back (±2 degrees)
 __7e. The lower arms are parallel to the dummy’s sagittal plane and perpendicular to the upper arms.
 __7f. Move the elbows inward (medially) until initial contact occurs between the sleeve and the portion of the suit covering the thorax while maintaining the relationships between the arms, seat back, and sagittal plane.
__8. The data acquisition system, including transducers, conforms to the requirements of SAE Recommended Practice J211. (572.219(c))
__9. Install the transducers or other devices for measuring the impact probe force.
__10. Time zero is defined as the time of initial contact between the test probe and the shoulder. Force = impactor mass x acceleration (572.214(b)(2)) & (572.214(b)(3))
11. Release the pendulum and allow it to fall freely from a height to achieve an impact velocity of 3.6 ± 0.1 m/s (11.8 ± 0.3 ft/s), measured by an accelerometer mounted on the impact probe. (572.214(b))

12. Impact the shoulder with the test probe so that at the moment of contact the probe's longitudinal centerline should be horizontal (±1 degree), and the centerline of the probe should be within 2 mm (0.08 in) of the target point. (572.214(c)(6))

13. The probe is guided during impact so that there is no significant lateral, vertical, or rotational movement. (572.214(c)(7))

14. No suspension hardware, suspension cables, or any other attachments to the probe, including the velocity vane, contact the dummy during the test. (572.214(c)(8))

15. Repeat for opposite side shoulder (right or left).

16. Record results in Table 9:

TABLE 8. SHOULDER IMPACT CALIBRATION RESULTS (572.214(b))

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Probe Speed</td>
<td>3.5 m/s ≤ speed ≤ 3.7 m/s</td>
<td></td>
</tr>
<tr>
<td>Shoulder Compression</td>
<td>17.0 mm ≤ compression ≤ 22.0 mm</td>
<td></td>
</tr>
<tr>
<td>Peak Force</td>
<td>1123 N ≤ peak force ≤ 1437 N</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 16. LATERAL SHOULDER IMPACT TEST SET-UP SPECIFICATIONS
THORAX WITH ARM CALIBRATION CHECKLIST

DATA SHEET 8
THORAX WITH ARM IMPACT TESTS (572.215)

Dummy Serial Number ________________ Test Date ________________

Technician ____________________________

__Pretest calibration
__Posttest calibration verification

Test attempt no. ____ (when successive impact tests are necessary)

__1. It has been at least 30 minutes since the last shoulder test.
__2. The components required for this thorax test consists of the torso assembly (drawing 020-4500) with an IR-TRACC (drawing SA572-S37) installed. (572.215(a))
__3. The assembly has soaked in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity between 10 and 70 percent for at least four hours prior to a test. (572.215(c)(2))
 Record temperature ______
 Record humidity ______
__4. The target point of the impact is the point of intersection on the lateral aspect of the upper arm and a line projecting from the thorax of the dummy. (572.215(c)(5))
__5. The projecting line is horizontal, runs parallel to the coronal plane of the dummy, and passes through the midpoint of a line connecting the centers of the bolt heads of the two IR-TRACC mounting bolts. The projected line should intersect the upper arm within 2 mm of its long axis. (572.215(c)(5))
__6. Cloth the dummy in the Q3s suit (drawing 020-8001). No additional clothing or shoes are placed on the dummy. (572.215(c)(1))
__7. Seat the dummy on the qualification bench described in Figure 5, the seat pan and seat back surfaces of which are covered with thin sheets of PTFE (Teflon) (nominal stock thickness: 2 to 3 mm) along the impact side of the bench. (572.215(c)(3))
__8. Position the dummy on the bench as shown in Figure 17 (572.215(c)(4))
 __8a. The ribs contact the seat back oriented 24.6 degrees relative to vertical
 __8b. The legs are extended forward along the seat pan oriented 21.6 degrees relative to horizontal
 __8c. The knees are spaced 40 mm (1.57 in) apart
 __8d. The upper arm on the non-impact side of the dummy is positioned parallel to the seat back (±2 degrees).
 __8e. The upper arm on the impact side is positioned such that the target point intersects its long axis.
 __8f. The lower arms are parallel to the dummy's sagittal plane and perpendicular to the upper arms.
 __8g. The elbows are moved inward (medially) until initial contact occurs between the sleeve and the portion of the suit covering the thorax while maintaining the relationships between the arms, seat back, and sagittal plane.
9. The data acquisition system, including transducers, conforms to the requirements of SAE Recommended Practice J211. (572.219(c))

10. Install the transducers or other devices for measuring the impact probe force.

11. Time zero is defined as the time of initial contact between the test probe and the arm. Force = impactor mass x acceleration (572.215(b)(2)) & (572.215(b)(3))

12. Release the pendulum and allow it to fall freely from a height to achieve an impact velocity of 5.0 ± 0.1 m/s (16.4 ± 0.3 ft/s), measured by an accelerometer mounted on the impact probe. (572.215(b))

13. Impact the arm with the test probe so that at the moment of contact the probe's longitudinal centerline should be horizontal (±1 degree), and the centerline of the probe should be within 2 mm (0.08 in) of the target point. (572.215(c)(6))

14. The probe is guided during impact so that there is no significant lateral, vertical, or rotational movement. (572.215(c)(7))

15. No suspension hardware, suspension cables, or any other attachments to the probe, including the velocity vane, contact the dummy during the test. (572.215(c)(8))

16. Repeat for opposite side arm (right or left).

17. Record results in Table 10:

TABLE 9. THORAX WITH ARM IMPACT CALIBRATION RESULTS (572.215(b))

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Probe Speed</td>
<td>4.9 m/s ≤ speed ≤ 5.1 m/s</td>
<td></td>
</tr>
<tr>
<td>IR-TRACC Compression</td>
<td>22.5 mm ≤ compression ≤ 27.5 mm</td>
<td></td>
</tr>
<tr>
<td>Peak Force after 5ms</td>
<td>1360 N ≤ peak force ≤ 1695 N</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 17. LATERAL THORAX WITH ARM IMPACT TEST SET-UP SPECIFICATIONS
14.7 THORAX WITHOUT ARM CALIBRATION CHECKLIST

DATA SHEET 9
THORAX WITHOUT ARM IMPACT TESTS (572.216)

Dummy Serial Number _______________ Test Date _______________

Technician ___________________________

__Pretest calibration
__Posttest calibration verification

Test attempt no. ____ (when successive impact tests are necessary)

__1. It has been at least 30 minutes since the last shoulder test.
__2. The components required for this thorax test consists of the torso assembly (drawing
 020-4500) with an IR-TRACC (drawing SA572-S37) installed and the arm on the
 impacted side removed. (572.216(a) & (572.216(b))
__3. The assembly has soaked in a controlled environment at any temperature between
 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity between 10 and 70 percent
 for at least four hours prior to a test. (572.216(c)(2))
 Record temperature ______
 Record humidity ______
__4. The target point of the impact is the midpoint of a line between the centers of the bolt
 heads of the two IR-TRACC bolts. (572.216(c)(5))
__6. Cloth the dummy in the Q3s suit (drawing 020-8001). No additional clothing or shoes
 are placed on the dummy. (572.216(c)(1))
__7. Seat the dummy on the qualification bench described in Figure 5, the seat pan and
 seat back surfaces of which are covered with thin sheets of PTFE (Teflon) (nominal
 stock thickness: 2 to 3 mm) along the impact side of the bench. (572.216(c)(3))
__8. Position the dummy on the bench as shown in Figure 18 (572.216(c)(4))
 __8a. The ribs contact the seat back oriented 24.6 degrees relative to vertical
 __8b. The legs are extended forward along the seat pan oriented 21.6 degrees
 relative to horizontal
 __8c. The knees are spaced 40 mm (1.57 in) apart
 __8d. The upper arm on the non-impact side of the dummy is positioned parallel to
 the seat back (±2 degrees).
 __8e. The lower arm is perpendicular to the upper arm.
__9. The data acquisition system, including transducers, conforms to the requirements of
 SAE Recommended Practice J211. (572.219(c))
__10. Install the transducers or other devices for measuring the impact probe force.
__11. Time zero is defined as the time of initial contact between the test probe and the
 arm. Force = impactor mass x acceleration (572.216(b)(2))
__12. Release the pendulum and allow it to fall freely from a height to achieve an impact
 velocity of 3.3 ± 0.1 m/s (10.8 ± 0.3 ft/s), measured by an accelerometer mounted on
 the impact probe. (572.216(b))
13. Impact the thorax with the test probe so that at the moment of contact the probe’s longitudinal centerline should be horizontal (±1 degrees), and the centerline of the probe should be within 2 mm of the target point. (572.216(c)(6))

14. The probe is guided during impact so that there is no significant lateral, vertical, or rotational movement. (572.216(c)(7))

15. No suspension hardware, suspension cables, or any other attachments to the probe, including the velocity vane, contact the dummy during the test. (572.216(c)(8))

16. Repeat for opposite side (right or left).

17. Record results in Table 11:

TABLE 10. THORAX WITHOUT ARM IMPACT CALIBRATION RESULTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Left Impact</td>
</tr>
<tr>
<td>Test Probe Speed</td>
<td>3.2 m/s ≤ speed ≤ 3.4 m/s</td>
<td></td>
</tr>
<tr>
<td>IR-TRACC Compression</td>
<td>24.5 mm ≤ compression ≤ 30.5 mm</td>
<td></td>
</tr>
<tr>
<td>Peak Force</td>
<td>610 N ≤ peak force ≤ 754 N</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 18. LATERAL THORAX WITHOUT ARM IMPACT TEST SET-UP SPECIFICATIONS
14.8 LUMBAR SPINE CALIBRATION CHECKLISTS

DATA SHEET 10
FORE-AFT LUMBAR FLEXION TEST (572.217(b)(1))

Dummy Serial Number ________________ Test Date ________________

Technician ___________________________

__Pretest calibration
__Posttest calibration verification

Test attempt no. ____ (when successive flexion tests are necessary)

__1. It has been at least 30 minutes since the last neck test.

__2. The components required for the fore-aft lumbar flexion tests include the headform (drawing 020-9050, sheet 2) with angular rate sensor installed (drawing SA572-S58), six-channel neck/lumbar load cell (drawing SA572-S8), lumbar spine assembly (drawing 020-6000), lumbar interface plate (drawing 020-9062) and pendulum interface plate (drawing 020-9051) with angular rate sensor installed (drawing SA572-S58). (572.217(a)(1))

__3. The assembly has soaked in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity between 10 and 70 percent for at least four hours prior to a test. (572.217(c)(1))

Record temperature ______
Record humidity ______

__4. Visually inspect lumbar assembly for cracks, cuts and separation of the rubber from the metal segments. Note: If the damage resulted from the low-risk deployment test, the damaged area is to be documented with photography and the posttest calibration verification testing completed before any replacement or repairs are made.

Record findings and actions: ___
__
__
__

__5. Torque the jam nut on the lumbar cable to 0.2 N-m (2 in-lb).

__6. The data acquisition system, including transducers, conforms to the requirements of SAE Recommended Practice J211. (572.219(c))

__7. The test fixture pendulum conforms to the specifications in Figure 15. (572.33(c)(3))

__8. Mount the lumbar spine and headform assembly so that the midsagittal plane of the headform is vertical and coincides with the plane of motion of the pendulum, and with the lumbar spine placement such that the front side of the lumbar spine is closest to the honeycomb material as shown in Figure 19. (572.217(c)(2)(i))

__9. Install the transducers or other devices for measuring the "D" plane rotation with respect to the pendulum longitudinal centerline. Note: Plane "D" is the top horizontal surface of the neck/lumbar load cell. These measurement devices should be designed to minimize their influence upon the performance of the head-lumbar spine assembly.
11. Plane D is perpendicular ± 1° to the centerline of the pendulum.

12. Set the instrumentation so that the moment and rotation are defined to be zero when the longitudinal centerline of the lumbar spine and pendulum are parallel. (572.217(b)(1)(iii))

13. Release the pendulum and allow it to fall freely from a height to achieve an impact velocity of 4.4 ± 0.1 m/s (14.4 ± 0.3 ft/s), measured by an accelerometer mounted on the pendulum at time zero. (572.217(c)(3)(i))

14. Stop the pendulum from the initial velocity with an acceleration vs. time pulse that meets the velocity change as specified in Table 12. Integrate the pendulum accelerometer data channel to obtain the velocity vs. time curve beginning at time zero. (572.217(c)(3)(ii))

15. Time zero is defined as the time of initial contact between the pendulum striker plate and the honeycomb material. (572.217(c)(3)(iii))

16. Record results in Table 12:

TABLE 11. FORE-AFT LUMBAR SPINE CALIBRATION RESULTS
(572.217(b)(1)) & 572.217(c)(3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendulum Impact Speed</td>
<td>4.3 m/s ≤ speed ≤ 4.5 m/s</td>
<td></td>
</tr>
<tr>
<td>Pendulum ΔV with respect to impact speed @ 10 ms</td>
<td>1.3 m/s ≤ ΔV ≤ 1.7 m/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>@ 20 ms</td>
<td>2.7 m/s ≤ ΔV ≤ 3.7 m/s</td>
</tr>
<tr>
<td></td>
<td>@ 30 ms</td>
<td>4.1 m/s ≤ ΔV ≤ 4.9 m/s</td>
</tr>
<tr>
<td>Plane D Rotation</td>
<td>Peak moment: 78.2 ≤ moment ≤ 96.2 N-m</td>
<td>____ Nm @ ___ degrees</td>
</tr>
<tr>
<td></td>
<td>During the rotation range: 47.0 ≤ angle ≤ 58.5 degrees</td>
<td></td>
</tr>
<tr>
<td>Negative Moment Decay</td>
<td>Time to decay to zero angle: 49 ≤ time ≤ 59 ms</td>
<td></td>
</tr>
</tbody>
</table>
DATA SHEET 11
LATERAL LUMBAR FLEXION TESTS (572.217(b)(2))

Dummy Serial Number _____________ Test Date _____________

Technician ___________________________

__Pretest calibration
__Posttest calibration verification

Test attempt no. ____ (when successive flexion tests are necessary)

__1. It has been at least 30 minutes since the last neck test.
__2. The components required for the lateral lumbar flexion tests include the headform (drawing 020-9050, sheet 2) with angular rate sensor installed (drawing SA572-S58), six-channel neck/lumbar load cell (drawing SA572-S8), lumbar spine assembly (drawing 020-6000), lumbar interface plate (drawing 020-9062) and pendulum interface plate (drawing 020-9051) with angular rate sensor installed (drawing SA572-S58). (572.217(a)(1))
__3. The assembly has soaked in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity between 10 and 70 percent for at least four hours prior to a test. (572.217(c)(1))
 Record temperature ______
 Record humidity ______
__4. Visually inspect lumbar assembly for cracks, cuts and separation of the rubber from the metal segments. Note: If the damage resulted from the low-risk deployment test, the damaged area is to be documented with photography and the posttest calibration verification testing completed before any replacement or repairs are made.
 Record findings and actions: ___
 __
 __
 __

__5. Torque the jam nut on the lumbar cable to 0.2 N-m (2 in-lb).
__6. The data acquisition system, including transducers, conforms to the requirements of SAE Recommended Practice J211. (572.219(c))
__7. The test fixture pendulum conforms to the specifications in Figure 15. (572.33(c)(3))
__8. Mount the lumbar spine and headform assembly on the pendulum described in Figure 20 to so that the midsagittal plane of the headform is vertical and perpendicular to the direction of motion of the pendulum, and with the lumbar spine placement such that the right (or left) side of the lumbar spine is closest to the honeycomb material. (572.217(c)(2)(ii))
__9. Install the transducers or other devices for measuring the "D" plane rotation with respect to the pendulum longitudinal centerline. Note: Plane "D" is the top horizontal surface of the neck/lumbar load cell. These measurement devices should be designed to minimize their influence upon the performance of the head-neck assembly.
__11. Plane D is perpendicular ± 1° to the centerline of the pendulum.
12. Set the instrumentation so that the moment and rotation are defined to be zero when the longitudinal centerline of the lumbar and pendulum are parallel. (572.217(b)(2)(iii))

13. Release the pendulum and allow it to fall freely from a height to achieve an impact velocity of $4.4 \pm 0.1 \text{ m/s} (14.4 \pm 0.3 \text{ ft/s})$, measured by an accelerometer mounted on the pendulum at time zero. (572.217(c)(3)(i))

14. Stop the pendulum from the initial velocity with an acceleration vs. time pulse that meets the velocity change as specified in Table 13. Integrate the pendulum accelerometer data channel to obtain the velocity vs. time curve beginning at time zero. (572.217(c)(3)(ii))

15. Time zero is defined as the time of initial contact between the pendulum striker plate and the honeycomb material. (572.217(c)(3)(iii))

16. Repeat for opposite side flexion (right or left).

17. Record results in Table 13:

TABLE 12. LATERAL LUMBAR SPINE CALIBRATION RESULTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Left Flexion</td>
</tr>
<tr>
<td>Pendulum Impact Speed</td>
<td>$4.3 \text{ m/s} \leq \text{ speed} \leq 4.5 \text{ m/s}$</td>
<td></td>
</tr>
<tr>
<td>Pendulum ΔV with respect to impact speed</td>
<td>$1.3 \text{ m/s} \leq \Delta V \leq 1.7 \text{ m/s}$</td>
<td>@ 10 ms</td>
</tr>
<tr>
<td></td>
<td>$2.7 \text{ m/s} \leq \Delta V \leq 3.7 \text{ m/s}$</td>
<td>@ 20 ms</td>
</tr>
<tr>
<td></td>
<td>$4.0 \text{ m/s} \leq \Delta V \leq 4.8 \text{ m/s}$</td>
<td>@ 30 ms</td>
</tr>
<tr>
<td>Plane D Rotation</td>
<td>Peak moment: $46.1 \leq \text{ moment} \leq 58.2 \text{ N-m}$</td>
<td>___ Nm @ ___ degrees</td>
</tr>
<tr>
<td></td>
<td>During the rotation range: $79.4 \leq \text{ angle} \leq 98.1 \text{ degrees}$</td>
<td></td>
</tr>
<tr>
<td>Negative Moment Decay</td>
<td>Time to decay to zero angle: $48 \leq \text{ time} \leq 59 \text{ ms}$</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 20. LUMBAR LATERAL FLEXION TEST SET-UP SPECIFICATIONS
14.8 PELVIS CALIBRATION CHECKLIST

DATA SHEET 12
PELVIS IMPACT TEST (572.218)

Dummy Serial Number _______________ Test Date _______________

Technician ___________________________

__Pretest calibration
__Posttest calibration verification

Test attempt no. ____ (when successive impact tests are necessary)

__1. It has been at least 30 minutes since the last impact test.
__2. The components required for this test consists of the pelvis assembly (drawing 020-7500) with either a uniaxial pubic load cell (drawing SA572-S7) or a pubic load cell structural replacement (drawing 020-7150) installed on the non-impact side of the pelvis. (572.218(a))
__3. The assembly has soaked in a controlled environment at any temperature between 20.6 and 22.2 °C (69 and 72 °F) and a relative humidity between 10 and 70 percent for at least four hours prior to a test. (572.218(c)(2))
 Record temperature ______
 Record humidity ______
__4. The target point of the impact is located at the center of the pelvis so that the impact point of the longitudinal centerline of the probe is located 185 mm from the center of the knee pivot screw (part #020-9008) and centered vertically on the femur. (572.218(c)(5))
__6. Cloth the dummy in the Q3s suit (drawing 020-8001). No additional clothing or shoes are placed on the dummy. (572.218(c)(1))
__7. Seat the dummy on the qualification bench described in Figure 5, the seat pan and seat back surfaces of which are covered with thin sheets of PTFE (Teflon) (nominal stock thickness: 2 to 3 mm) along the impact side of the bench. (572.218(c)(3))
__8. Position the dummy on the bench as shown in Figure 21 (572.218(c)(4))
 __8a. The ribs contact the seat back oriented 24.6 degrees relative to vertical
 __8b. The legs are extended forward along the seat pan oriented 21.6 degrees relative to horizontal
 __8c. The knees are spaced 40 mm (1.57 in) apart
 __8d. The upper arm on the non-impact side of the dummy is positioned parallel to the seat back (±2 degrees).
 __8e. The lower arm is perpendicular to the upper arm.
 __8e. The arm on the impacted side is positioned upwards away from the pelvis.
__9. The data acquisition system, including transducers, conforms to the requirements of SAE Recommended Practice J211. (572.219(c))
__10. Install the transducers or other devices for measuring the impact probe force.
__11. Time zero is defined as the time of initial contact between the test probe and the pelvis. Force = impactor mass x acceleration (572.218(b)(2))
12. Release the pendulum and allow it to fall freely from a height to achieve an impact velocity of 4.0 ± 0.1 m/s (13.1 ± 0.3 ft/s), measured by an accelerometer mounted on the impact probe. (572.218(b))

13. Impact the pelvis with the test probe so that at the moment of contact the probe’s longitudinal centerline should be horizontal (±1 degrees), and the centerline of the probe should be within 2 mm of the target point. (572.218(c)(6))

14. The probe is guided during impact so that there is no significant lateral, vertical, or rotational movement. (572.218(c)(7))

15. No suspension hardware, suspension cables, or any other attachments to the probe, including the velocity vane, contact the dummy during the test. (572.218(c)(8))

16. Repeat for opposite side (right or left).

17. Record results in Table 14:

TABLE 13. PELVIS IMPACT CALIBRATION RESULTS (572.218(b))

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Left Impact</th>
<th>Right Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Probe Speed</td>
<td>3.9 m/s ≤ speed ≤ 4.1 m/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Force</td>
<td>1587 N ≤ peak force ≤ 1587 N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 21. PELVIS LATERAL IMPACT TEST SET-UP SPECIFICATIONS
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>MANUFACTURER</th>
<th>MODEL NO.</th>
<th>SERIAL NO.</th>
<th>DATE OF CALIBRATION</th>
<th>CALIBRATION DUE DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUMMY INSTRUMENTATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head Ax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head Ay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head Az</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head/Neck Form Angular Rate Sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder String Potentiometer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest Ax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest Ay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest Az</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR TRACC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head/Pelvis Form Angular Rate Sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumbar Load Cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABORATORY INSTRUMENTATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck Pendulum Accelerometer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck Pendulum Angular Rate Sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelvis Pendulum Angular Rate Sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact Pendulum Accelerometer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABORATORY TECHNICIAN:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>