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Abstract 

This paper demonstrates a new process that has been specifically designed for the support of the 

U.S. Department of Transportation’s (DOT’s) Corporate Average Fuel Economy (CAFE) standards. In 

developing the standards, DOT’s National Highway Traffic Safety Administration made use of the CAFE 

Compliance and Effects Modeling System (the "Volpe model" or the “CAFE model”), which was 

developed by DOT’s Volpe National Transportation Systems Center for the 2005–2007 CAFE rulemaking 

and has been continuously updated since. The model is the primary tool used by the agency to evaluate 

potential CAFE stringency levels by applying technologies incrementally to each manufacturer’s fleet until 

the requirements under consideration are met. The Volpe model relies on numerous technology-related and 

economic inputs, such as market forecasts, technology costs, and effectiveness estimates; these inputs are 

categorized by vehicle classification, technology synergies, phase-in rates, cost learning curve adjustments, 

and technology “decision trees.” Part of the model’s function is to estimate CAFE improvements that a 

given manufacturer could achieve by applying additional technology to specific vehicles in its product line. 

A significant number of inputs to the Volpe decision-tree model are related to the effectiveness (fuel 

consumption reduction) of each fuel-saving technology.  

Argonne National Laboratory has developed a full-vehicle simulation tool named Autonomie, which has 

become one of the industry’s standard tools for analyzing vehicle energy consumption and technology 

effectiveness. Full-vehicle simulation tools use physics-based mathematical equations, engineering 

characteristics (e.g., engine maps, transmission shift points, and hybrid vehicle control strategies), and 

explicit drive cycles to predict the effectiveness of individual and combined fuel-saving technologies. The 

Large-Scale Simulation Process accelerates and facilitates the assessment of individual technological 

impacts on vehicle fuel economy. This paper will show how Argonne efficiently simulates hundreds of 

thousands of vehicles to model anticipated future vehicle technologies. 

Keywords: Large Scale Simulation, Hybrid vehicles, CAFE, Autonomie 

1 Introduction 
In 1975, Congress passed the Energy Policy and 
Conservation Act, requiring standards for 

Corporate Average Fuel Economy (CAFE), and 

charging the U.S. Department of Transportation 

(DOT) with the establishment and enforcement of 

these standards. The Secretary of Transportation 

has delegated these responsibilities to DOT’s 
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National Highway Traffic Safety Administration 

(NHTSA). DOT’s Volpe National Transportation 

Systems Center provides support for 

DOT/NHTSA’s regulatory and analytical activities 

related to fuel economy standards, which, unlike 

long-standing safety and criteria pollutant 

emissions standards, apply to manufacturers’ 

overall fleets rather than to individual vehicle 

models. In developing the standards, DOT/NHTSA 

made use of the CAFE Compliance and Effects 

Modeling System (the "Volpe model" or the 

“CAFE model”), which was developed by the 

Volpe Center for the 2005–2007 CAFE 

rulemaking and has been continuously updated 

since. 

Part of the model’s function is to estimate CAFE 

improvements that a given manufacturer could 

achieve by applying additional technology to 

specific vehicles in its product line. DOT/NHTSA 

has made use of vehicle simulation results to 

update technology effectiveness estimates used by 

the model. In recent rulemakings, the decision 

trees have been expanded so that DOT/NHTSA is 

better able to track the incremental and 

net/cumulative cost and effectiveness associated 

with each technology, substantially improving the 

“accounting” of costs and effectiveness for CAFE 

rulemakings. 

Full vehicle simulation tools use physics-based 

mathematical equations, engineering charac-

teristics (e.g., engine maps, transmission shift 

points, and hybrid vehicle control strategies), and 

explicit drive cycles to predict the effectiveness of 

individual fuel-saving technologies and the 

effectiveness of combinations of fuel-saving 

technologies. Argonne National Laboratory, a U.S. 

Department of Energy (DOE) national laboratory, 

has developed a full-vehicle simulation tool named 

Autonomie [1]. Autonomie has become one of the 

industry’s standard tools for analyzing vehicle 

energy consumption and technology effectiveness. 

The objective of the current project is to develop 

and demonstrate a process that, at a minimum, 

provides more robust information that can be used 

to calibrate inputs applicable under the Volpe 

model’s existing structure. The project will be 

more fully successful if a process can be developed 

that minimizes the need for decision trees and 

replaces the synergy factors with inputs provided 

directly from a vehicle simulation tool. The present 

report provides a description of the Large-Scale 

Simulation Process (LSSP) that was developed by 

Argonne National Laboratory and implemented in 

Autonomie to answer this need.  

The Volpe model currently relies on multiple 

decision trees to represent component technology 

options, including: 

• Powertrain electrification; 

• Engine ; 

• Transmission;  

• Light weighting;  

• Aerodynamics; and  

• Rolling resistance  

Figure 1 shows the decision trees in the Volpe 

model. During the simulation, the model walks 

through each decision tree to find the technology 

that should be selected next to provide the best fuel 

energy consumption improvement at the lowest 

cost. 

 

 

Figure 1:  All technological decision trees in the 

Volpe model 

 

2 Process Overview 
The main objective of the present study is to 

provide an efficient tool for performing individual 

vehicle simulations. To do so, individual vehicles 

have to be simulated to represent every 

combination of vehicle, powertrain, and 

component technologies. 

 

The current decision trees include 

• 5 vehicle classes (Compact, Midsize, Small 

SUV, Midsize SUV, Pickup); 

• 17 engine technologies; 

• 11 electrification levels, comprising 4 no- or 

low-electrification levels (conventional 

vehicle is equivalent to no-electrification 

level) and 7 levels of hybridization; 

• 8 transmission technologies (applied to 

no/low-electrification-level vehicles only); 
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• 5 light-weighting levels; 

• 4 rolling-resistance levels; and 

• 3 aerodynamic levels. 

 

For each vehicle class, 

 

17 engine technologies  4 no/low-electrification 

levels  8 transmission technologies  5 light-

weighting levels  4 rolling-resistance levels  3 

aerodynamic levels = 32,640 vehicles 

+ 
7 hybridized vehicle technologies  5 light-

weighting levels  4 rolling-resistance levels  3 

aerodynamic levels = 420 vehicles 

= 
33,060 vehicles for each vehicle class. 

 

Thus, the combination of the technologies from 

each decision tree leads to 33,060 simulations for a 

single vehicle class (or 165,300 for 5 classes) to 

fully populate inputs to the Volpe model.  

The LSSP includes the following steps, as shown 

in Figure 2: 

1. Collect/develop all the technology 

assumptions; 

2. Develop a process to automatically create 

the vehicle models; 

3. Size all the individual vehicles to meet the 

same vehicle technical specifications; 

4. Run each vehicle model on the specified 

driving cycles; 

5. Create a database with all the required 

inputs for the Volpe model; and 

6. Create a post-processing tool to validate the 

database content. 

Since this process has to be performed in an 

acceptable amount of time, two additional 

processes were developed and implemented: 

• Use of distributed computing for vehicle 

sizing and simulation, and 

• Use of statistical analysis to minimize the 

number of simulations that need to be 

performed. 

 

 

Figure 2:  Overview of Large-Scale Simulation 

Process (LSSP) 

 

3 Autonomie 
Autonomie is a MATLAB-based software 

environment and framework for automotive 

control system design, simulation, and analysis [1] 

Sponsored by the DOE Vehicle Technologies 

Office, the tool is designed for rapid and easy 

integration of models with varying levels of detail 

(low to high fidelity) and abstraction (from 

subsystems to systems and entire architectures), as 

well as processes (calibration, validation, etc.). 

Developed by Argonne in collaboration with 

General Motors, Autonomie was designed to serve 

as a single tool that can be used to meet the 

requirements of automotive engineers throughout 

the development process, from modeling to 

control. Autonomie’s ability to simulate many 

powertrain configurations, component 

technologies, and vehicle-level controls over 

numerous drive cycles has been used to support 

dozens of studies focusing on fuel efficiency, cost-

benefit analysis, or greenhouse gases. 

 

4 Individual Vehicle Setup Process 
The LSSP was developed by Argonne to run a very 

large number of vehicles/simulations in a fast and 

flexible way. It allows Argonne to quickly respond 

to Volpe Center and DOT/NHTSA requests to be 

able to simulate any technology combination in 

any vehicle class. The following subsections 

describe the different steps of the process. 

 

4.1 Vehicle Spreadsheet Definition 

A template spreadsheet contains the basic 

information for a vehicle, such as vehicle name, 

vehicle class, and vehicle technology, as well as 

components information such as battery 
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technology, engine technology, and transmission 

type.  

The template spreadsheet contains seven tabs: 

Vehicle Details, Parameter Values, Control 

Settings, Sizing Algorithm and Information, 

Running Procedures and Cycles, Translation for 

Matlab Computation, and Assumptions Details. 

Under each tab, columns outline vehicle 

configurations. Four columns refer to the four 

no/low-electrification-level vehicles, and 7 

columns refer to the high-electrification-level 

vehicles. 

 

4.2 Multi-Spreadsheet 

Expansion/Duplication 

After the LSSP defines the spreadsheet with all the 

component and vehicle inputs, a multiplier code, 

shown in Figure 3, expands the reference/template 

spreadsheet into as many spreadsheets as needed to 

define the vehicle’s technology combinations on 

the basis of the decision trees’ input. 

 

 
 

Figure 3: Multi-spreadsheet expansion/duplication 

 

5 Distributed Computing Process 
At this stage of the LSSP, all the vehicles are 

created and ready to be sized and simulated in 

Autonomie. Running 33,060 vehicles requires 

more than 250,000 simulations, from sizing 

algorithms—imposing recurrence and iteration/ 

looping—to vehicle simulation on cycles and 

combined or Plug-in Hybrid Electric Vehicle 

(PHEV) procedures. 

With the multitude of technology combinations to 

simulate, the usual computing resources are no 
longer practical. Running all of the simulations on 

one computer would take several months or years 

before any analysis could be completed. Thanks to 

advances in distributed computing, simulation time 

can be greatly reduced. Among the computing 

resources available at Argonne National 

Laboratory is a cluster of 128 worker nodes 

dedicated to the System Modeling and Control 

Group. A larger computing facility could be used 

in the future to further accelerate the simulations. 

 

5.1 Setup 

The researchers of the System Modeling and 

Control Group use Autonomie as the simulation 

framework, synchronized by a cluster head node 

computer. The head computer extracts the data 

from the Excel files describing the different 

technology pathways and distributes it to the 

researchers, as diagrammed in Error! Reference 

source not found.. An algorithm optimizes the 

distribution of jobs for vehicle simulations and 

parametric studies. The total simulation time for 

the 33,060 vehicles was about 84 hours (3.5 days). 

 

 

Figure 4:  Diagram of distributed computing process 

 

One of the biggest advantages of distributed 

computing is that it facilitates the quick rerun of 

simulations, which occurred many times during 

this study. This experience allowed Argonne to 

develop an ultimate LSSP that is functional, 

smooth, and flexible, with the ability to easily and 

quickly add and rerun as many vehicles and new 

technologies as needed. The generic process will 

be able to automatically handle additional 

technologies without any code modification. As a 

result, the Volpe model’s future technological 

needs will be easily and quickly integrated at any 

time in order to feed the model for CAFE 

rulemaking analyses. 

 

6 Vehicle Sizing Process 

6.1 Vehicle Technical Specifications 

To compare different vehicle technology-

configuration-powertrain combinations, all 
vehicles to be studied are sized to meet the same 

requirements: 

 
From template 
vehicle definition 

to all vehicle 

definitions 
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• Initial vehicle movement (IVM) to 60 mph 

in 9 sec ± 0.1 sec; 

• Maximum grade (gradeability) of 6% at 

65 mph at gross vehicle weight (GVW); and 

• Maximum vehicle speed >100 mph 

These requirements are a good representation of 

the current American automotive market and of 

American drivers’ expectations. The relationship 

between curb weight and GVW for current 

technology-configuration-powertrain combinations 

was modeled and forms the basis for estimating the 

GVWs of future vehicle scenarios. 

 

6.2 Component Sizing Algorithms 

Owing to the impact of the component maximum 

torque shapes, maintaining a constant power-to-

weight ratio for all configurations leads to an 

erroneous comparison between technologies 

because of different vehicle performance 

characteristics (i.e., time for 0–60 mph). Each 

vehicle should be sized independently to meet the 

vehicle technical specifications. 

Improperly sizing the components will lead to 

differences in fuel consumption and will influence 

the results. On this basis, we developed several 

automated sizing algorithms to provide a fair 

comparison between technologies. Algorithms 

have been defined depending on the powertrain 

(e.g., conventional, power split, series, electric) 

and the application (e.g., HEV, PHEV). All 

algorithms are based on the same concept: the 

vehicle is built from the bottom up, meaning each 

component assumption (e.g., specific power, 

efficiency) is taken into account to define the 

entire set of vehicle attributes (e.g., weight). This 

process is always iterative in the sense that the 

main component characteristics (e.g., maximum 

power, vehicle weight) are changed until all 

vehicle technical specifications are met. The 

transmission gear span or ratios are currently not 

modified to be matched with specific engine 

technologies. On average, the algorithm takes 

between five and 10 iterations to converge. Figure 

4 shows an example of the iterative process for a 

conventional vehicle.  

Since each powertrain and application is different, 

the rules are specific: 

• For HEVs, the electric-machine and battery 

powers are determined in order to capture all 

of the regenerative energy from a city cycle 

(UDDS). The engine and the generator are 

then sized to meet the gradeability and 

performance (time from IVM to 60 mph) 

requirements.  

• For PHEV20s (PHEVs with 20-mi all-
electric range), the electric machine and 

battery powers are sized to follow the city 

cycle in electric-only mode (this control is 

only used for the sizing; a blended approach 

is used to evaluate fuel consumption). The 

battery’s usable energy is defined to follow 

the city drive cycle for 20 miles, depending 

on the requirements. The engine is then 

sized to meet both performance and 

gradeability requirements (usually, 

gradeability is the determining factor for 

PHEVs). 

 

 

Figure 4:  Conventional-powertrain sizing algorithm 

 

• For PHEV40s, the main electric-machine 

and battery powers are sized to be able to 

follow the aggressive US06 drive cycle 

(duty cycle with aggressive highway driving) 

in electric-only mode. The battery’s usable 

energy is defined to follow the city drive 

cycle for 40 miles, depending on the 

requirements. The genset (engine + 

generator) or the fuel cell systems are sized 

to meet the gradeability requirements. 

• For Battery Electric Vehicles, the electric 

machine and energy storage systems are 

sized to meet all of the vehicle technical 

specifications. 

• The micro-HEV, BISG (Belt-integrated 

starter generator), and CISG (Crank-

integrated starter generator) have sizing 

results very similar to their conventional 

counterparts because they all use the same 

sizing rule. [2] [3] 
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7 Vehicle Simulation Process 
Once the vehicles are sized to meet the same 

vehicle technical specifications, they are simulated 

on the appropriate standard driving cycles (33,060 

vehicles or >250,000 runs). It is important to 

properly store individual results as structured data, 

because they will be reused to support database 

generation.  

Figure 5 shows the folder organization for each 

individual simulation. Each folder contains the 

results for one combination and characterizes one 

branch/path of the tree. Folders can contain up to 

five directories, depending on the vehicle 

technology and the type of run performed. Results 

are divided into directories representing the cycle 

or procedure simulated. For example, the 

combined procedure for conventional vehicles has 

two parts separating the city and highway runs, and 

the PHEV procedure has four parts separating the 

city and highway runs as well as the charge-

sustaining and charge-depleting modes. The last 

directory is the sizing structure (performance test). 

 

 

Figure 5:  Results folder organization for individual 

simulations 

 

7.1 Run File 

As shown in Figure 6, “xx.a_run” includes all the 

information on the vehicle as well as a 

cycle/procedure. This file allows us to reproduce 

the simulation in the future if modifications or 

changes occur. 

 

 

Figure 6:  Autonomie run file 

 

7.2 Data.mat File 

“data.mat” is the results file containing all of the 

vehicle parameters and all of the time-based 

signals. A sample of signals and parameters 

included in data.mat is shown in Figure 7. 

 

 

Figure 7:  Autonomie data.mat file 

 

7.3 Vehicle Model 

As shown in Figure 8, “*.mdl” represents the 

complete vehicle model. Saving each vehicle 

model ensures that any simulation can be 

replicated at any time. 
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Figure 8:  Autonomie representation of conventional 

vehicle 

 

7.4 XML Results File 

As shown in Figure 9, “simulation.a_result” is an 

XML version of the results file that includes the 

main simulation inputs and outputs. This file is 

later used to generate the complete MySQL 

database. 

 

 

Figure 9:  Autonomie XML results file 

 

7.5 Folder Nomenclature 

The MySQL database created and used by the 

Volpe model requires a searchable list of 

parameters from which to retrieve information 

about a particular vehicle. Because some of these 

parameters did not come from Autonomie, a folder 

nomenclature was adopted, as shown in Figure 10. 

 

The naming conventions are similar to the 

acronyms currently used in the decision trees by 

the Volpe model. 

 

Figure 10:  Folder nomenclature 
 

7.6 Individual Vehicle Validation 

Once the individual simulations are completed, 

Autonomie provides the ability to analyze them at 

both a high level (i.e., fuel economy) and a low 

level (i.e., time-based engine power) through its 

graphical user interface. An algorithm is also used 

to automatically flag any potential issues within a 

simulation (i.e., too many shifting events on a 

specific cycle). [5] 

Figure 11 shows a sample of the parameter outputs 

from Autonomie provided for every vehicle among 

the 33,060 vehicles simulated.  

 

 

Figure 11:  Baseline conventional vehicle outputs 

 

Numerous predefined plots are also available to 

analyze any time-based parameter from the 

simulation. Figure 12 shows an example of engine 

speed, vehicle speed, and gear number for a 

conventional vehicle. 
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Figure 12:  Vehicle detailed signals for individual 

check of anomalies 

 

8 Vehicle Database 
The Volpe model requires the user to tackle two 

complicated problems simultaneously: 

1. A vehicle simulation tool must be used to 

quickly and properly estimate the energy 

consumption of extremely large numbers of 

specific vehicle, powertrain, and component 

technologies; and 

2. The user must easily access and analyze 

information across large amounts of data. 

A process for performing large-scale simulation 

with Autonomie is now in place. With it, a 

simulation can be quickly validated, or any 

discrepancies in the results can be examined in 

detail.  

Autonomie was not originally designed to analyze 

such large sets of data. Such analyses impose data 

management concerns (numbers of files, disk 

sizes, access times); require the ability to run post-

processing calculations without the time cost of 

rerunning all of the simulations; and involve plots, 

calculations, and other analytical tools for looking 

at high-level indicators and spotting overall trends. 

In response, Argonne’s new process allows the 

detailed simulation results provided by Autonomie 

to either be distilled into a format that can be easily 

distributed and analyzed horizontally across many 

simulations, or examined via a deep, vertical dive 

into one simulation. Both aspects are critical for 

the full-scale vehicle analysis that the Volpe model 

requires. 

The output of the simulations includes everything 

necessary for Autonomie to analyze or recreate an 

individual simulation, including the Simulink 

model representing the vehicle, a metadata file 

containing simulation results (*.a_result file), and 

a data.mat file containing all of the time-based 

signal data. These results can be archived for full 

traceability and reproducibility of all simulations. 
However, it is currently not feasible to share or 

analyze these data. For example, 36,000 simulation 

results resulted in 2 TB of disk space usage. It’s 

simply not feasible to pass this much information 

around, much less the number of simulations 

required for the Volpe analysis (i.e., second-by-

second fuel or electrical consumption values). 

Additionally, each simulation has individual files 

storing the results, so just managing or indexing 

the sheer number of files becomes an issue. Most 

of the information contained in those results files, 

however, is not necessary for the Volpe analysis. 

Therefore, a subset of the data is collected into a 

portable, user-friendly database. 

 

8.1 Database Creation 

Argonne’s database creation process works from 

an input sheet that specifies which input and output 

parameters should be included in the database. The 

process scans all of the simulation results files, 

extracts the specified parameters, and stores them 

in a single, specialized database file. This allows 

us to exclude irrelevant information not needed for 

cross-cutting analyses, while leaving the full 

results archived, just in case. Figure 14 shows a list 

of the input and output parameters currently 

included in the database. 

A single database file is easy to redistribute. The 

aforementioned 2 TB of data was compressed into 

30.4 MB of data, and took only 27 minutes to 

generate from the original simulation results. 

Additionally, the database is developed using the 

MS SQL Express 2012 format, which is free and 

easily accessed by standard structured query 

language tools. 

 

8.2 Database Structure 

As shown in Figure 14, the database is structured 

to be generic, so that any simulation input 

parameter, result, or descriptive property can be 

stored. This approach allows maximum flexibility 

in the type of data that can be stored. The tables 

are structured to allow logical grouping of data, 

maximize retrieval speed, and minimize disk 

space. 

 

Vehicles and the references to their parameters are 

stored separately from parameters specific to the 

type of simulation, because the same vehicle can 

be run on multiple procedures or cycles. For 

example, one vehicle may be subjected to an 

acceleration test and a fuel consumption test, such 

as a combined-cycle procedure. Each simulation 

may produce a fuel consumption result, which 

would then be linked to that simulation record. 

However, parameters common across both 

simulation runs, such as the coefficient of drag of 

the vehicle, would be linked to the vehicle record. 

Not all vehicles and simulations have the same 
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parameters; for example, motor parameters are 

only available for a vehicle with an electric power 

path (e.g., EVs, HEVs, PHEVs), and fuel 

consumption is only available for simulations with 

an engine or fuel cell, which exclude EVs. 

 

 

 

Figure 13:  Inputs and outputs from simulation that 

can be saved to the database 

 

Figure 14:  Database structure 

 

Each parameter stores name, description, data type 

(i.e., string, double, integer, Boolean), and unit. 

The values themselves are organized into tables by 

data type for disk size optimization. 

 

8.3 User Interface 

Although the database is accessible by any tool or 

programming language that can interact with 

databases, Argonne has also developed a tool to 

easily visualize and analyze the data (Error! 

Reference source not found.). This tool provides 

a quick and intuitive way for users to quickly 
select subsets of simulation results of interest, 

select which parameters to view, modify 

assumptions, perform additional post-processing 

calculations on the data retrieved from the 

database, and view plots to better visualize the 

data. 

Additionally, the user interface provides some 

advanced features that allow users to import their 

own plots and analysis functions; save “projects” 

of filters, parameters, and overridden assumptions; 

or export subsets of the data to Excel for additional 

data analysis or redistribution. 

This tool allows users who are not familiar or 

comfortable with direct database access to perform 

the analysis necessary for Volpe modeling.  

 

 
Figure 15:  Database analysis tool 

 

9 Reducing the Number of 

Simulations through Statistical 

Analysis 
Distributed computing is one approach to 

accelerating simulation. Another approach is to use 

statistical analysis to downselect the number of 

simulations to be run and develop an algorithm to 

populate the complete database from a subset of 

simulations using statistical predictive modeling 

[6]. Motivated by the fact that several of the 

technological improvements were linear, and 

expecting to find apparent relationships and trends, 

especially linked to weight reduction, 

aerodynamics, and rolling resistance, the 

Mathematics and Computer Science Division 

(MCS) at Argonne collaborated with the System 

Modeling and Control Group to develop a method 

for minimizing the number of runs required to 

fulfill the Volpe model’s demand. MCS has 

defined the relationships between component 

technologies to minimize the number of 

simulations. 

 

9.1 Exploratory Data Analysis 

This section presents an overview of the 

exploratory data analysis performed on the vehicle 

simulation results. The analysis comprises three 
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phases: correlation studies, sensitivity analysis, and 

predictive modeling.  

 

In the first phase, the number of outputs that need 

to be modeled was reduced by eliminating outputs 

that are highly correlated with another output. In 

the second phase, for a given output that is not 

eliminated in the first phase, the inputs that do not 

have a significant impact on the output were 

removed by performing a nonlinear sensitivity 

analysis. In the third phase, a supervised machine-

learning approach was used to learn the 

relationship between the input and the output of an 

unknown response function by fitting a model 

from relatively few representative simulation runs. 

When the model is accurate enough, it can predict 

the output from new (unseen) input combinations. 

This prediction provides numerous benefits and is 

especially valuable when the evaluation becomes 

expensive, such as with vehicle simulations. The 

preliminary analysis shows that 

• For a given class of vehicles, several outputs 

from the vehicle simulation are highly 

correlated; and 

• The machine-learning model only requires 

50% of the simulation runs as training data 

to predict the outputs of the remaining 

simulation runs with reasonable accuracy. 

Consequently, using the models, we can reduce the 

number of required simulations by 50%. 

 

9.1.1 Correlation Studies 

First, the dimensionality of the output space was 

reduced by eliminating outputs that are highly 

correlated with another output. Given two outputs, 

the linear correlation between them was computed 

using the Pearson product-moment correlation 

coefficient [6]. Using this correlation measure, 

when an output 𝑦𝑝 is correlated to an output 𝑦𝑞, we 

remove 𝑦𝑝. 

Figure 16 shows the pairwise correlations between 

outputs. Several outputs are highly correlated. This 

analysis showed that five outputs are not correlated 

with one another and, given these five outputs, the 

remaining eight outputs can be predicted (and are 

hence removed from further analysis).  

 

 

 

Figure 16:  Pairwise correlations among outputs. 

Each entry in the matrix represents the correlation 

measure between the corresponding entries. Circles 

and slanting lines denote no correlations and high 

correlations, respectively. 

9.1.2 Sensitivity Analysis 

Next, we reduced the dimensionality of the input 

space by analyzing the impact of the input 

parameters on the uncorrelated outputs. For this 

purpose, the random forest (RF) method [7], a 

state-of-the-art machine learning approach for 

nonlinear regression, was adopted. 

RF uses a decision tree-based approach that 

recursively partitions the multi-dimensional input 

space D into a number of hyper rectangles. The 

hyper rectangles are disjoint, so that each input 

configuration falls in exactly one hyper rectangle. 

The partitioning is done in such a way that input 

configurations with similar outputs fall within the 

same hyper rectangle. The partitioning gives rise to 

a set of if-else rules that can be represented as a 

decision tree, with each hyper rectangle 

corresponding to a leaf in this tree. 

Over each hyper rectangle and for each output, a 

constant value is assigned; typically, this is an 

average of the values for that output for each seen 

configuration that falls within the hyper rectangle. 

Given an unseen input 𝑥∗, the algorithm uses the 

if-else rule to find the leaf (hyper rectangle) to 

which this input belongs and returns the 

corresponding constant value as the predicted 

value. RF uses a collection of decision trees, where 

each tree is obtained by such a partitioning 

approach using a different set of seen (“training”) 

points. In particular, for each tree generation, the 

algorithm takes a different random subsample of 

points from the given master training set. Since 

each individual tree’s prediction is thus based on a 
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different subsample of points, the prediction of the 

output at a given 𝑥∗can vary from tree to tree. 

In addition to nonlinear regression (the next 

phase), RF can be used for analyzing the 

sensitivity of the inputs from the training points. 

This was implemented as follows: In the training 

phase of RF, we randomly sample 50% of the data. 

The random forest model is fit on this master 

training set. The mean squared error (MSE) on a 

training set is computed as follows: 

 

𝑀𝑆𝐸 =
1

𝑙
∑ (𝑓(𝑥𝑖) − 𝑓(𝑥𝑖))

2
𝑙

𝑖=1

  ,            (1) 

 

where 𝑙  is the number of training points and 

𝑓(𝑥𝑖) and 𝑓(𝑥𝑖) are the observed value (from the 

vehicle simulation) and predicted value (from the 

RF model) at the input parameter configuration 𝑥𝑖, 

respectively. To assess the impact of an input 

parameter m, the values of m in the training set are 

randomly permuted. Again, an RF model is fit on 

this imputed training set and the MSE is computed. 

This procedure is repeated several times. If a 

parameter m is important, permuting the values of 

m should affect the prediction accuracy 

significantly, resulting in a substantial increase in 

the MSE. For each parameter m, the percentage 

increase in MSE (%IncMSE) allows one to assess 

the importance of the parameter m. A permutation 

example is shown below. To assess the importance 

of the first parameter in the training set (containing 

3 points and represented by the matrix T), the 

values of the first column are permuted (the first 

column corresponding to the values of the first 

parameter) in the matrix, which is shown in 𝑇1
′: 

 

 
 

For the output vehicle mass, Figure 17 shows the 

%IncMSE for each input parameter. We observe 

that input parameters glider mass, mass reduction, 

and powertrain have a significant impact on 

vehicle mass, but that the Aero and Rolling input 

parameters are insignificant. Note that the negative 

%IncMSE is an artifact of over-fitting the RF 

model.  

 

 

Figure 17:  Impact of each input on vehicle mass 

measured across the testing set 

Using this analysis, for each uncorrelated output 

we removed inputs that do not have a significant 

impact on the corresponding output. 

 

9.1.3 Predictive Modeling 

For each uncorrelated output, we built a predictive 

model using the RF method. In the experiments, 

we analyzed the number of training points 

(simulation runs) required to obtain high prediction 

accuracy. Given 𝑁𝑦𝑝
 observed data points for the 

output 𝑌𝑝 , we sample k% of the 𝑁𝑦𝑝
 points at 

random for training, and the remaining points are 

used for testing. As an accuracy measure, the root 

mean squared error (RMSE = √MSE) is computed 

on the test set. To reduce the effects of the 

randomness from the random sampling and the 

RF method, we repeat the experiments for a total 

of 10 repetitions. 

For illustration, we first consider the output vehicle 

mass (where  𝑁𝑦𝑝
= 11,490 ). Figure 18 (top) 

shows the box plots of the RMSE obtained over 

10 repetitions for increasing sizes of training point 

sets. We observe that for a training set containing 

30% of all possible points, the RF method can 

achieve high prediction accuracy. Further increases 

in the number of training points do not reduce the 

RMSE significantly. For a training point size of 

30%, Figure 19 (bottom) shows the correlation 

between the observed and the predicted values, 

along with the error bound computed on the 

observed values. The results indicate that the errors 

in the predicted values are within ±3% of the 

observed values (blue lines).  
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Figure 18:  Predictive modeling for vehicle mass. 

(Top) Root mean squared error as a function of the 

% of training points obtained over 10 repetitions. 

(Bottom) Correlation between observed and 

predicted values when 30% of the simulation runs 

are used for training  

 
 

 

Figure 19:  Predictive modeling for combined fuel 

consumption. (Top) Root mean squared error as a 

function of the % of training points obtained over 

10 repetitions. (Bottom)  
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