Human Model Occupant Kinematics in Highly Reclined Seats during Frontal Crashes

Kyle Boyle, Jingwen Hu, Lauren Zaseck, Matthew P. Reed UMTRI-Biosciences

April 4, 2019

Project Background

Standard automotive posture

Kinematics Submarining risk Injury risk Impact Response

Concept autonomous vehicle posture

- Current safety standards are based on occupants seated in standard posture (~24° recline)
- Improvements to seats and restraint systems may be needed to ensure good protection for people in alternative postures

Project Background

- NHTSA-funded PMHS impact tests in vehicles with automated driving systems (ADS)
- Focus will be on highly reclined occupants
- Two populations of interest
 - 1) 50th percentile male (UMTRI)
 - 2) Vulnerable occupants: small female, obese (MCW)
- Primary outcome will be a cohesive dataset that can be used for future validation of ATDs and human body models

Project Background

- UMTRI/MCW → Similar techniques/philosophies for PMHS instrumentation
- Head, spine, and pelvis kinematics
- Extremity kinematics
- Fracture timing
- Chest deflection

Simulation Strategy

- Predict possible PHMS response / trends
- Examine factors related to submarining
 - Recline angle
 - Seat type
 - Restraint parameters (pre-tensioning, locking tongue belt angle)
- Two parametric studies completed
 - Focused on recline angle and seat type
 - Focused on restraint characteristics
- GHBMC simplified model
- The model is not validated in reclined conditions

Simulation Setup- Lower Extremity Constraints

- Total LX constraint not realistic
 - Spine buckling
 - Much higher spine forces
- Legs kicking up
 - Does not largely affect pelvis and upper body when compared to heel constraint conditions

	No	Heel	Touching
	Constraints	Constraint	Bolster
HIC	297	332	182
BrIC	0.67	0.68	0.51
Chest D	27.9	27.9	21.7
Head X Exc	783	777	816
Sh X Exc	501	497	600
Pelvis X Exc	268	236	30
Pelvis Z Exc	-4	-10	-31
Pelvis Rot	54°	56°	0 °
Lumbar Force	759	917	1141

- 35 mph crash pulse
- Simulation Matrix (3x3)
 - 3 seats (Rigid Seat, Semi-rigid, Vehicle OEM seat)
 - 3 recline angle postures (25°, 45°, 60°)
- 3.25 kN shoulder load limit
- 2.5 kN retractor pre-tensioner
- Lap belt angles
 - 65° on the anchor side
 - 70° on the buckle side
- No lower extremity constraints

Occupant Positioning: Volunteer Study

How do people sit in highly reclined postures?

UMTRI Study:

- 24 men and women
- laboratory mockup
- 4 seat back angles (23°, 33°, 43°, 53°)
- sitter-selected head support
- posture measurement using FARO Arm

Occupant Positioning: Posture Model

Posture Prediction:

Statistical modeling of torso posture

Inputs:

- Stature
- Erect Sitting Height
- Body Weight
- Seat Back Angle

Outputs:

- Head and torso landmarks
- Torso joint center locations
- Pelvis angle

Occupant Positioning: Morphing

- Posture applied to Simplified GHBMC model using mesh morphing technique
 - Rotation of upper body and abdomen bones around pelvis and lumbar joint centers
 - Morphing of surrounding abdomen flesh

- Submarine issues at high recline angles
- Torso does not pitch forward at higher recline angles
- Head to knee contact possibilities at lower recline angles
- Higher lumbar compression loads with higher recline angles
 - Scale of loads seems low, could be issue with HBM definitions

- Simulation Matrix (4x4)
 - 4 belt angles (45°, 51°, 58°, 65°)
 - 4 restraint conditions (No AP/DLT, AP only, DLT only, both AP and DLT
- 3.25 kN shoulder load limit
- 2.5 kN retractor pre-tensioner
- 45° recline angle
- 35 mph crash pulse
- No lower extremity constraints

Anchor Pre-tensioner

Dynamic Locking Tongue

- Submarine issues at lower belt angles
- Use of AP and DLT
 - Each reduces pelvis X excursion
 - Can reduce risk of submarining although not as effective as changing belt angle
- Higher lumbar compression loads when pelvis is better constrained
 - Scale of loads seems low, could be issue with HBM definitions

Summary

- Human models at highly reclined angles were developed by morphing the GHBMC model into postures calculated by a volunteer data set.
- Frontal crash simulations were conducted with these morphed models considering differences in seat and restraint types.
- The simulations suggested that:
 - Recline angle significantly changes occupant kinematics
 - Recline angle and belt angle both largely affect submarining risk
 - There is a risk of head to knee contact at lower recline angles without airbag / IP
 - There is a conflict between submarining risk and lumbar force in highly reclined postures.

Acknowledgements

- NHTSA
- GHBMC
- Altair
- LSTC

Contact: Kyle Boyle kjboyle@umich.edu

