LIGHT VEHICLE DRIVER ACCEPTANCE CLINICS

PRELIMINARY RESULTS

Mike Lukuc
NHTSA Research

May 21, 2012

LIGHT VEHICLE DRIVER ACCEPTANCE CLINIC (DAC) PROJECT SCOPE

Objectives:

- Obtain feedback on connected vehicle technology and safety applications from a representative sample of drivers
- Assess the performance and reliability of 5.9 GHz DSRC communications and GPS in diverse geographic locations and environmental conditions...and
- Promote V2V-based safety technology and potential safety benefits

DAC PROJECT TEAM

AUTOMOTIVE EVENTS

DAC VEHICLE RESOURCES

- 16 V2V equipped vehicles
 - 2 from each OEM
 - 8 for use by participants (host vehicles)
 - 8 for use by AE professional drivers during scenario execution (remote vehicles)
- 8 additional V2V equipped "template" vehicles
 - Available as spares for DAC if needed
 - Intended for performance testing (have additional instrumentation)
- DAC vehicles are 16 of the 64 integrated vehicles that will be deployed in Safety Pilot Model Deployment (Ann Arbor, MI)

DAC APPLICATIONS...

- EEBL: Emergency Electronic Brake Lights
- FCW: Forward Collision Warning
- BSW/LCW: Blind Spot Warning/Lane Change Warning
- LTA: Left Turn Assist
- IMA: Intersection Movement Assist
- DNPW*: Do Not Pass Warning

SAFETY APPLICATIONS & SCENARIOS

V2V Applications & Scenarios

- Run the following applications (# of scenarios)
 - EEBL (1); FCW (4); BSW/LCW (2); DNPW (2); IMA (2); LTA (1)

Applications	Ford	GM	Honda	Mercedes	Toyota	Hyundai- Kia	Nissan	VW-Audi
EEBL	X	X	Х	X	Х			х
FCW	Х	Х	х	Х		х	X	х
BSW / LCW	х	х	х	х	х	х	X (BSW)	
DNPW	Х	X	X					
IMA	X	X	х	Х	х			х
LTAP / OD							X	

DRIVER VEHICLE INTERFACE (DVI) EXAMPLES

- OEM specific DVIs
 - Audible, visual and / or haptic

PARTICIPANT EXPERIENCE

- Arrival
- Registration
- Pre-drive questionnaire
- Briefing
- Orientation to vehicle and station
- Safety Feature Exposure
- Questionnaire (after each application)
- Post Drive Questionnaire
- Focus Group (if applicable)

SAFETY APPLICATION EXPOSURE

- 112 participants over a 4 day period
- Typically, 4 sessions per day at 8 participants each
- Participants are:
 - Equally split by gender
 - Equally split into three age categories (20-30, 40-50, 60-70)
- Participants experience each V2V safety feature
- After each exposure the experimenter asks a series of questions
 - Captures their immediate impressions
 - Safety Application Effectiveness
 - Relevance of Driver Vehicle Interface (DVI)
- Focus Groups

DEMOGRAPHIC AND

APPLICATION EXPOSURE BREAKDOWNS

DAC - Overall

Age	Male	Female	Total	
20-30	117	111	228	
40-50	115	117	232	
60-70	115	113	228	
Total	347	341	688	

	EEBL	FCW	BSW-LCW*	DNPW	IMA	LTA
Acura	91	88	85	85	91	
Cadillac	88	87	86	86	88	
Ford	85	85	85	84	85	
Hyundai		172	87			
Infiniti		87	173			173
Mercedes	87	87	87		87	
Toyota	172		85		172	
VW-Audi	165	82			165	
Total	688	688	688	255	688	173
% of Overall	100%	100%	100%	37%	100%	25%

A Single Example Showing The "Big-Picture"

DRIVERS TEND TO DESIRE V2V TECHNOLOGY

DESIRABILITY - ACROSS ALL FACTORS

I would like to have this Vehicle-to-Vehicle Communication safety feature on my personal vehicle.

Negative Neutral Positive

DESIRABILITY ACROSS ALL FACTORS AND PARSED BY AGE

I would like to have this Vehicle-to-Vehicle Communication safety feature on my personal vehicle.

A Few Examples Demonstrating

DRIVER ACCEPTANCE AS A FUNCTION OF SAFETY FEATURE

OVERALL IMPRESSIONS - USEFULNESS

How useful do you think a safety feature that alerted you to the presence of a (specific threat) would be in terms of improving driving safety in the real world?

May 21, 2012

OVERALL IMPRESSIONS - DESIRABILITY

I would like to have a safety feature that alerted me to the presence of a (specific threat) on my personal vehicle.

OVERALL IMPRESSIONS - INTUITIVENESS

An Example of

DRIVER'S ASSESSMENT OF SYSTEM LIMITATIONS

System Limitations - Market Penetration

What percentage of vehicles would need to be similarly equipped before you believe the benefits would be noticeable? (select one)

20

An Example Demonstrating Demographic Relationship to

SELF-REPORTED UNDERSTANDING OF V2V

OVERALL IMPRESSIONS

After experiencing these vehicle-to-vehicle safety features first hand, please tell us how well you think you understand this technology and how it works. (select only one)

OVERALL IMPRESSIONS

After experiencing these vehicle-to-vehicle safety features first hand, please tell us how well you think you understand this technology and how it works. (select only one)

A Willingness to Pay Example Indicating

DRIVER'S VALUE V2V

MONETARY VALUE

At what price level might you begin to feel this collective group of safety applications (Vehicle-to-Vehicle communications safety feature) is too expensive to consider purchasing? (select one)

A Couple Examples Asking Drivers About

UNINTENDED CONSEQUENCES

IMPACT ON SAFETY - DISTRACTION

Monitoring or interpreting information provided by these safety features is no more distracting than using my car's radio.

IMPACT ON SAFETY - COMPLACENCY

Availability of these safety features would cause drivers to pay less attention to the driving environment.

Executive Summary

FOCUS GROUP

FOCUS GROUP OVERVIEW

- 12 focus groups were conducted
- Each group was comprised of eight participants (for a total of 96) who had just completed the driving portion of the study.
- Mix of gender and ages in each group, randomly assigned to participate in each focus group.
- Each participant per focus group had driven one of the eight OEM vehicles, and had experienced the majority of scenarios.
- The focus group moderator was Helen I. Thomas of Automotive Events.

.

INITIAL SUMMARY OF OVERALL REACTIONS

The illustration below demonstrates respondents' most common reactions to this technology ... that saving a life or many lives, far outweighs the potential drawbacks:

NEXT STEPS

- Final data analysis underway at VTTI
 - Includes Thematic Content Analysis of Focus Group discussion and responses to open ended questions
- Comprehensive presentation of results during RITA ITS-JPO Safety Program Industry Workshop
 - Chicago Sept 25-27
- Draft Final Report due from CAMP VSC3 in Sept 2012
 - Must be subjected to NHTSA review process prior to publication
 - Published report will be available on NHTSA and RITA ITS websites:
 - NHTSA:
 http://www.nhtsa.gov/Research/Crash+Avoidance/Office+of+Crash+Avoidance+Research+Technical+Publications
 - RITA ITS:
 http://www.its.dot.gov/connected_vehicle/connected_vehicle.htm

Mike Lukuc NHTSA Research 202-366-0407 Mike.Lukuc@Dot.Gov