Steps to Estimate Potential Safety Benefits

- Identify operational envelope and functions of Pedestrian Crash Avoidance/ Mitigation (PCAM) systems
- Determine target crash population for identified PCAM systems
- Identify data needs and gaps
- Propose methods to obtain supplemental data
- Adapt and exercise method to estimate potential national benefits
- DOT HS 812400 - Estimation of Potential Safety Benefits for Pedestrian Crash Avoidance/ Mitigation Systems (April 2017)

Fatality Trends on US Roadways

From 2015 to 2016 : All trafficway $\uparrow 5.6 \%$ \& Pedestrians $\uparrow 9 \%$

Defining PCAM Systems

Operational Envelope

- Forward moving light vehicle
- Vehicle-based sensing suite
- Struck pedestrian with the front of vehicle in $1^{\text {st }}$ event of crash
- Driver warning
- Automatic Emergency Braking (AEB)

System Functions

1. AEB Only
2. FIRST Come First Serve*

- First brake reaction

3. BEST Braking*

- Highest braking level
- Involves warning and impaired drivers
- Impaired = assume no reaction

（2人和㐫

Priority PCAM Pre－Crash Scenarios

GES Average＊
21,090

Safety Benefits - Reduction in Crashes and Injuries

Crash Avoidance
Considers
target crashes
and PCAM
effectiveness
Multiple
methods to
avoid
All crashes,
fatal crashes,
costs,
equivalent lives

NHTSA

Additional Crash Data Collection

- Understand the exact dynamics of S1
- Time-To-Collision (TTC)
- NHTSA special crash investigation
- Detailed crash information

Results (43 cases)

- TTC range from <1-22 s
- Pedestrian distances range from 2-35 meters
- Vehicle distances range from <10-200+ meters
- Improved impact point

PCAM Testing

- 3 production OEM systems
A. 2015 Radar, Lidar, and Stereo Camera
- Tested at NHTSA's Vehicle Research Testing Center
B. 2015 Stereo Camera
C. 2016 Radar and Stereo Camera

Target Pedestrian	Pedestrian Speed (MPH)	Target Right-Left	Target Facing Vehicle	Target Away Vehicle	Day	Yes	No
	3.1	X			X		X
	4.9	X			X		X
	Stationary		X	X	X		X
Child	3.1	X			X	X	X

Testing Results - Sample Data

Simulation and Assumptions

- Reconstructed FARS and GES cases to available test conditions
- Applied PCAM test data directly to cases
- Modeled human driver behavior and used injury risk curves
- OUTPUT = treatment crashes with PCAM and respective impact speeds
- Assumptions
- No test data = no benefit estimation
- Min/ max test speeds were extrapolated
- Conflict starts are dependent on technology limit as seen in testing

Safety Benefits－Crash Avoidance

－ 4,987 crashes reduced
－ 810 fatal crashes reduced
－Minimal differences between warning and system brake logic （FIRST，BEST）
－Other measures include comprehensive costs and equivalent lives

Safety Benefits - Crash Mitigation

- 1,949 MAIS 2^{+}injuries reduced
- 1,390 MAIS 3^{+}injuries reduced
- Minimal differences between warning and system brake logic (FIRST, BEST)
- Other measures include comprehensive costs and equivalent lives

NHISA

THANK YOU

QUESTIONS?

Stephen Stasko

 NHTSAIntelligent Technologies Research
Stephen.Stasko@dot.gov
Mikio Yanagisawa
Volpe Center
Advanced Vehicle Technology Mikio.Yanagisawa@dot.gov

