

SAE Government Industry Meeting January 24-26, 2018

Phil Azeredo

Advanced Vehicle Technology Division U.S. DOT/Volpe Center

Scope

- Goal
 - Develop test procedures for intersection movement assist (IMA) and left turn assist (LTA) safety applications.
- Focus
 - Design procedures that are relatable to naturalistic driving characteristics

• Steps

- 1. Determine target test scenarios.
- 2. Analyze naturalistic driving data and crash data to determine performance criteria and testing speeds.
- 3. Design new test procedures using results of analysis.
- 4. Run the test procedures and use data to refine/improve.
- 5. Finalize test procedures

What are IMA and LTA?

- IMA and LTA are safety applications that address crash-imminent crossingpath scenarios
 - Usually occur at intersections
 - LTA involves left turns from one or more vehicles involved

Pre-Crash Scenarios Used

- Straight Crossing Paths (SCP)
 - 53% of crossing-path crash comprehensive costs*
- Left Turn Across Path/Opposite Direction (LTAP/OD)
 - 31% of crossing-path crash comprehensive costs*

SV=Subject Vehicle POV= Principal Other Vehicle

* Based on 2011-2012 Fatality Analysis Reporting System (FARS) and National Automotive Sampling System's General Estimates System (GES)

Initial Conditions

- Three sets of initial conditions:
 - 1. SV is moving
 - 2. SV is stopped
 - 3. SV is stopped and view is obstructed

Warning Conditions

- Three types of warning conditions:
 - 1. Must Warn
 - 2. Suppress Warn
 - 3. No Warn

Application Performance Criteria

- Information taken from:
 - Naturalistic driving data; and
 - Crash event data recorders (EDRs)
- Looked at when:
 - SV went before POV
 - SV crashed into POV
 - SV went after POV

Suggested Performance Criteria

- Define time-range when system must warn (MW)
- Define two timeranges when system may or may not warn (MNW)
- Suppress warning at all other times

Example is of an SCP where the SV is initially stopped.

Test Validity Criteria and Kinematics

Putting it together *Example SCP-Stopped*

- Define:
 - SV's distance to intersection
 - POV's speed
 - When POV is at steady speed
 - Timing of SV brake release and acceleration
 - SV's acceleration level

Basic Test Scenarios

- IMA/LTA Moving
 SV is initially moving
- IMA/LTA Stopped
 SV is initially stopped
- IMA/LTA Obstructed
 - SV is initially stopped
 - View is obstructed

Concluding Remarks

- Completed Steps:
 - Conducted initial round of testing of the procedures
 - Collected test data from round of testing
- Next Steps:
 - Review test data from initial testing of the procedures
 - Use initial test data to refine/improve and re-run test procedures
 - Document final test procedures

NHTSA

QUESTIONS?

Stephen Stasko NHTSA Intelligent Technologies Research

Stephen.Stasko@dot.gov

Phil Azeredo

Volpe Center Advanced Vehicle Technology Philip.Azeredo@dot.gov