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ABSTRACT 

This paper presents a driver performance map of braking 
and steering in response to three driving scenarios that 
lead to rear-end crashes. This map encompasses low 
risk, conflict, near-crash, and crash imminent driving 
states that correspond to advisory warning, crash 
imminent warning, and crash mitigation functionalities for 
intelligent vehicle rear-end crash countermeasures. 
Specifically, this paper models driver response to a lead 
vehicle decelerating by building upon prior research that 
estimated the state boundaries for driver response to lead 
vehicle stopped or moving at slower constant speed. In 
addition, this paper compares braking performance to 
steering performance in the lead vehicle-decelerating 
scenario using plots of range and range-rate that roughly 
quantify the boundaries between the driving conflict 
states. Driver performance is also discussed among the 
three rear-end crash scenarios. 

INTRODUCTION 

Four driving conflict states have been identified to form the 
foundation of driver performance maps that consist of low 
risk, conflict, near-crash, and crash imminent driving 
states [1]. This performance mapping structure 
corresponds to crash countermeasures that assist drivers 
via advisory, crash imminent warning, automatic vehicle 
control, or crash injury mitigation functions. In addition, 
this map enables the integration of disparate databases 
on driver performance observed in such varied media as 
test tracks, simulators, naturalistic on-road experiments, 
and field operational tests. The development of these 
maps leads to the unambiguous and quantitative definition 
of boundaries between the four driving conflict states. 
These boundaries then allow researchers to perform the 
proper reduction of data collected during driving studies, 
combine and compare data files from different studies, 
and establish consistency in assessing the safety impact 
of crash avoidance systems among independent 
evaluations. 

The feasibility of the performance mapping structure was 
previously investigated, where it was found that the driving 
state boundaries could be reliably quantified using range 
and range-rate metrics based on the judgments of alert 
and aware drivers [1]. The drivers’ opinions as expressed 
in their braking or steering performance constituted the 
basis for assigning the levels of driving conflict states in 
different traffic scenarios. It was assumed that initial 
braking or steering onset indicated when drivers judge the 
start of the dynamic event as they followed “last-second 
maneuver” instructions. This approach utilized 
performance data gathered from test-track controlled 
studies in which subjects were instructed to wait to 
conduct a maneuver (brake or steer) at the last possible 
moment in order to avoid colliding with a vehicle using 
normal or hard intensity. Thus, drivers indicated their 
sense of conflict onset through last-second normal 
intensity maneuvers, and they showed their sense of near-
crash onset through last-second hard intensity 
maneuvers. The onset of the crash imminent state was 
determined by the start of evasive maneuvers that result in 
a crash. Such data might be obtained from driving 
simulator experiments or on-road naturalistic driving 
studies. 

Follow-on analysis of braking and steering performance in 
two vehicle-following scenarios, an encounter between a 
following vehicle and a lead vehicle stopped (LVS) or 
moving at lower constant speed (LVM), revealed that 
distinct driving state boundaries must be established for 
different driver responses to each dynamic scenario 
encountered in the driving environment [2]. The roughly 
quantified boundaries between the low risk and conflict 
driving states, and between the conflict and near-crash 
states, depended on the dynamic scenario when drivers 
responded by braking only. Drivers were generally less 
aggressive in the LVM scenario than in the LVS scenario. 
On the other hand, the steering response was 
independent of the two dynamic scenarios. Moreover, the 
roughly quantified boundaries of the driving states varied 
between braking and steering driver responses since 
drivers initiated last-second braking maneuvers at 
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generally longer distances than last-second steering 
maneuvers in order to avoid a lead vehicle ahead. 

This paper presents results from a recent analysis that 
builds upon prior research on estimating the state 
boundaries for the LVS and LVM scenarios based on 
driver performance [2]. The results are extended to the 
lead vehicle decelerating (LVD) scenario so as to create 
comprehensive driver performance maps for rear-end crash 
avoidance research. Eventually, it will be necessary to 
establish standardized quantifications for the driving state 
boundaries, though this was determined to be beyond the 
scope of this current work. Instead, this paper focuses on 
using the existing driver performance databases to roughly 
estimate and assess the quantified boundaries in the LVD 
scenario based on braking and steering maneuvers. The 
LVD scenario preceded about 57% of the 1,806,000 
police-reported rear-end crashes in the United States, 
which involved light vehicles (passenger vehicles, sport 
utility vehicles, vans, and pickup trucks) based on the 
2000 National Automotive Sampling System/General 
Estimates System crash database [3]. Collectively, the 
LVD, LVS, and LVM scenarios accounted for about 96% 
of these rear-end crashes. 

The analysis herein utilizes driver performance data sets 
collected by the GM-Ford Crash Avoidance Metrics 
Partnership (CAMP) from test track studies, and crash 
data sets obtained from the Iowa Driving Simulator (IDS) 
by the University of Iowa. CAMP collected data sets on 
driver performance from test track studies to develop a 
fundamental understanding of drivers’ last-second braking 
and last-second steering performance so that drivers’ 
perceptions could be properly identified and modeled for 
collision warning system crash alert timing purposes 
[4,5]. CAMP generated data from 4,326 last-second 
maneuver trials conducted in two separate studies, 
including 3,536 last-second braking judgment trials and 
790 last-second steering judgment trials. The first study 
collected braking judgment data from 2,580 trials in 
response to the LVS and LVD scenarios [4]. The second 
study obtained additional data from 1,746 trials that 
involved last-second braking and last-second steering 
maneuvers in response to LVS, LVM, and LVD scenarios 
[5]. The IDS study investigated different alert timings for a 
rear-end crash warning algorithm by examining how 
drivers react when purposefully distracted at the moment 
when a lead vehicle suddenly decelerates ahead after a 
period of vehicle following at constant speed [6]. Our 
analysis used crash data from the baseline condition – 
without the assistance of a rear-end crash warning 
system. 

This paper first delineates the modeling approach and 
data binning technique used for our analysis. After, this 
paper describes the boundaries between the four driving 
conflict states based on the initial braking response to the 
LVD scenario. The results are then compared to the 
boundaries of the LVS and LVM scenarios based on 

braking response. Afterwards, this paper estimates state 
boundaries based on the initial steering response to the 
LVD scenario. This is followed by a comparison between 
LVD steering response and LVS and LVM steering 
responses. Later, this paper discusses the results from 
both braking and steering responses. Finally, this paper 
recaps overall results and recommends future research 
steps. 

METHODOLOGY 

MODELING APPROACH 

First, it is important to understand the rationale behind our 
selection of the range and range-rate as the two metrics 
to characterize the vehicle-following dynamics. Figure 1 
illustrates the general kinematic situation of vehicle 
following. Here, each vehicle has a position on the road 
measured by the variable x. The range is the difference 
between the two x’s. Each vehicle is thus described by 
Newtonian mechanics of motion where the sum of the 
forces acting on the vehicle will lead to change in its 
motion.  For example for the lead vehicle, 

ΣFL = mL × aL  = mL × d2xL /dt2                                    (1) 

ΣFL refers to the sum of forces acting on the lead vehicle, 
while mL and aL indicate respectively the mass and 
acceleration of the lead vehicle. Furthermore, we can 
create a simple model of vehicle dynamics by expanding 
the left side of Equation (1) as follows: 

ΣFL = TL - BL                                                              (2) 

TL denotes the forward thrust exerted on the lead vehicle 
by the engine, and BL refers to the net braking exerted by 
the driver of the lead vehicle. Note that grade and drag are 
neglected. Moreover, TL and BL are both inputs under the 
control of the driver. After substituting u for the input 
variables and rearranging, the equation of longitudinal 
motion thus becomes: 

mL × d2xL /dt2 = CT1 × uaL  -  CB1 × ubL                    (3) 

Equation (3) represents a linear constant-coefficient state-
space system equation. uaL and ubL are respectively the 
engine and braking control inputs to the lead vehicle, while 
CT1 and CB1 are their corresponding coefficients. Note that 
we could formulate a very similar equation for the following 
vehicle. When we divide by the masses, and subtract, 
what we find is that the inter-vehicle dynamics follow the 
relationship: 

d2R/dt2 = f (uaL, uaF, ubL, ubF)                                       (4) 

That is, either driver may exert braking or acceleration 
through the input brake pedal or the accelerator pedal to 
affect change in the range, R. In reality, drivers could also 
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provide an input in steering, though we have neglected 
that to clarify the above longitudinal kinematics. 

Of course, it can be recognized from Equation (4) that the 
inter-vehicle longitudinal dynamics are thus a linear  
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Figure 1. Kinematic Illustration of Vehicle-Following 
Scenarios 

second-order system. Two states are thus necessary and 
sufficient to characterize the dynamics. The two states 
that would normally be chosen to model the system 
described by Equation (4) would be the range and range-
rate. This is fortunate for our driver performance analysis 
in that these are the same two states that drivers are able 
to judge well. Hence, we chose to use the range/range-
rate diagram to display results, which is exactly the same 
as a system engineer’s usual state space diagram, also 
known as a phase diagram, for longitudinal vehicle 
dynamics. Our explanation of the test scenarios is that 
the drivers see the range decreasing and they react 
through their control inputs - we seek to characterize the 
point at which they begin to exert control input via braking 
or steering. 

DATA BINNING TECHNIQUE 

The following vehicle initially maintains constant speed 
and range behind the lead vehicle in the LVD scenario.  At 
the onset of braking by the lead vehicle, the range (R) 
between the two vehicles starts to decrease, while the 
closing rate (Rdot) increases. Unlike the LVS and LVM 
scenarios in which Rdot remained constant, the driver of 
the following vehicle must initiate braking or steering in 
response to varying R and Rdot. The rate of change in R 
and Rdot depends on the deceleration level of the lead 
vehicle. The initial conditions of this scenario are 
represented by the initial vehicle speed, initial range, and 
lead vehicle deceleration. In the absence of a following 
vehicle response, the equation below characterizes the 
kinematics of the LVD scenario for a constant lead vehicle 
deceleration before the following vehicle starts braking as 
shown in the top part of the curve in Figure 2: 

L

2

0 a2
Rdot

RR
×

+=                                                       (5) 

Note that this equation is a solution to the purely 
kinematic relationships R = ∆x, v = dx/dt, and a = dv/dt. It 
is thus a different relationship than that of Equation (4), 
which shows the relationships between the forces and the 

motion. Here, we see the relationship between the motion 
variables due solely to lead vehicle deceleration. 

Equation (5) thus describes a curve in R, Rdot that starts 
at the vertical R axis of Figure 2 (the initial platooning 
condition) and loops down to the left as the range 
decreases while the range-rate increases. If the following 
vehicle did not brake at all, this curve would eventually 
intersect the R= 0 axis, thus indicating a crash. The 
parameter aL (m/s2) denotes the deceleration of the lead 
vehicle, while R0 (m) refers to the initial range prior to lead 
vehicle braking. Figure 2 also plots the range versus the 
range-rate as a result of the subsequent following vehicle 
braking response in the part of the curve in the figure that 
heads back towards the vertical axis. The following vehicle 
begins braking at the point where the two curves intersect 
and is denoted by the symbol subscript, B, on the 
metrics. 
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Figure 2. Trajectory of Lead Vehicle Decelerating 
Scenario with and without Following Vehicle Braking 
Response 
 

As we began our analysis, the experimental data were 
separated into bins to collect similar, kinematically 
comparable initial conditions. Figure 3 illustrates our data 
binning technique for the LVD scenario by demonstrating 
our approach to obtain the median initial response for 
each bin and to approximate the best-fit line for these 
median values across all bins. The binning of data allows 
us to examine and characterize the statistical distribution 
(mean, median, variance, and type) of driver behavior 
under separate initial conditions in each driving scenario. 
The median statistic was used because the bin “average” 
or a simple fit to the cloud of data was assumed to give 
too much weight to the outlying range values. For 
example, Figure 3 shows nine vehicle trajectories 
observed from LVD trials, grouped three in each bin by the 
initial range between the two vehicles at the braking onset 
of the lead vehicle. Bin C represents the 30 m bin and 
contains all range and range-rate data pairs at the braking 
onset of the following vehicle for initial separation 
distances between 27.5 and 32.5 m. In our actual data 
processing, the median value was computed for each bin 
with at least 10 experimental data points. Finally, a best-
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fit line or curve was approximated to estimate the overall 
response across all median values. Microsoft Excel 
software was utilized to generate the regression equations 
that provide rough estimates of the boundaries between 
the low risk and conflict driving states, and between the 
conflict and near-crash driving states. 
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Figure 3. Binning Approach, Median Initial Response, 
and Best-Fit line for Vehicle Trajectories in Lead Vehicle 
Decelerating Scenario 
 

ANALYSIS OF LAST-SECOND BRAKING 
PERFORMANCE 

RESULTS OF BRAKING ANALYSIS 

During CAMP’s LVD braking trials, subjects followed a 
lead vehicle towing a 3-dimensional mock-up of the rear-
end of a 1997 Mercury Sable with working brake lights at 
13, 20, or 27 m/s, and were given ample time to maintain 
and stabilize at what they considered to be their normal 
following distance. Later, the lead vehicle automatically 
braked to a stop according to a pre-specified braking 
profile, resulting in constant deceleration of 0.15, 0.28, or 
0.39g with the brake lights activated. The subjects were 
asked to wait to apply the brakes at the last possible 
moment in order to avoid colliding with the surrogate 
target, utilizing normal braking and hard braking 
instructions. The term “drivers” in the remainder of this 
paper refers to the subjects participating in these 
experiments. 

A total of 464 normal braking data points were sorted out 
into bins representing various combinations of R0, aL, and 
vF0 rounded respectively to 5 m, 0.05g, and 2.2 m/s bins. 
The parameter vF0 (m/s) denotes the initial speed of the 
following vehicle prior to braking. This process resulted in 
30 bins, each with at least 10 RdotB values. The 
parameter RdotB (m/s) denotes the range-rate at the onset 
of braking by the following vehicle. A linear regression 
approximation of the data using the 50th percentile value 

from each bin provides the following relationship between 
RB and the initial conditions: 

RB= -0.63 – 0.12×aL + 0.04×vF0 + 0.92×R0                (6) 

[r2 = 1.00, F-observed=  2,641, f0.01(3,26)= 4.64] 

r2 determines the degree of correlation between the 
estimated and actual RB values. r2 close to 1 indicates a 
strong relationship between the independent variables (aL, 
vF0, and R0) and RB. The regression equation is useful in 
predicting RB if F-observed statistic is greater than f0.01 (F-
critical) value. The subscript 0.01 refers to the probability 
of erroneously concluding that there is a relationship 
between RB and the independent variables [7]. 

Similarly, a total of 548 hard braking data points were 
sorted out into 34 bins with at least 10 RdotB values each. 
The linear regression approximation of the hard braking 
data based on the bin 50th percentile values is expressed 
as: 

RB= -3.99 – 0.86×aL + 0.14×vF0 + 0.80×R0                (7) 

[r2 = 0.98, F-observed=  578, f0.01(3,30)= 4.51] 

Equations (6) and (7) show that drivers chose RB to brake 
under last-second normal and hard braking instructions 
based mostly on their initial range, R0, using 50th 
percentile statistics. Perhaps, some drivers reacted to the 
brake lights of the lead vehicle instead of abiding by the 
last-second braking instruction. Generally, drivers follow 
other vehicles at a distance they feel very comfortable with 
based on their travel speed. Moreover, some drivers 
maintain the same following distance as other drivers who 
drive at lower speeds. When this following distance 
decreases due to lead vehicle braking, drivers begin to 
brake the moment their individual comfort level has been 
surpassed. To compensate for those drivers who react 
early to lead vehicle braking, the 85th percentile statistic 
was adopted for our LVD analysis instead of the median 
used for LVS and LVM data. The linear regression 
approximation of the LVD normal braking data using the 
85th percentile value from each bin becomes: 

RB= -1.24 – 0.31×aL + 0.05×vF0 + 0.86×R0                (8) 

[r2 = 0.99, F-observed=  1,042, f0.01(3,26)= 4.64] 

Equation (8) still shows that the range at the braking 
onset of the following vehicle is heavily associated with 
the range at the braking onset of the lead vehicle, given 
that aL is limited to about 0.75g and vF0 may reach a 
maximum value of 36 m/s. As a result, the data were 
binned by R0 without accounting for aL and vF0, yielding 14 
bins with 837 data points. The following relationship 
between RB and RdotB at the braking onset of the following 
vehicle represents the second order polynomial best fit for 
the 85th percentile values from each bin: 
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RB= 1.04×RdotB
2 + 1.65×RdotB + 10  [r2 = 0.94]        (9) 

It should be noted that RB was set to 10 m at RdotB= 0 
m/s to ensure that the onset braking range remains equal 
to or greater than the onset steering range for all RdotB 
values as explained later in this paper. Figure 4 provides a 
scatter plot for all CAMP’s LVD normal braking data and 
draws the best-fit curve for the bin 85th percentile values. 
About 79% of all CAMP’s LVD normal braking data points 
fell above this curve. However, the sparse data at the 
higher closing rates leads us to wonder if the best-fit curve 
may be too high in this area. The curve fit looks good for 
the data above –5 m/s, but looks too high below this 
point. 
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Figure 4. Normal Last-Second Braking Performance in 
Lead Vehicle Decelerating Scenario (85th percentile 
Statistics) 
 
Following the analysis of the LVD normal braking data, 
85th percentile statistics were conducted on the LVD hard 
braking data. The linear regression approximation of the 
LVD hard braking data using the 85th percentile value from 
each bin becomes: 

RB= -7.45 – 1.44×aL + 0.20×vF0 + 0.7×R0                (10) 

[r2 = 0.97, F-observed=  366, f0.01(3,30)= 4.51] 

The binning of the LVD hard braking data by R0, without 
accounting for aL and vF0, resulted in 14 bins with 846 data 
points. The following relationship between RB and RdotB at 
the braking onset of the following vehicle under the hard-
braking instruction represents the second order 
polynomial best fit for the 85th percentile values from each 
bin: 

RB= 0.2×RdotB
2 - 1.1×RdotB + 4.5  [r2 = 0.90]            (11) 

 
Figure 5 provides a scatter plot for all CAMP’s LVD hard 
braking data and draws the best-fit curve for the bin 85th 
percentile values. About 77% of all CAMP’s LVD hard 
braking data points fell above this curve. 

An attempt was made to construct the boundary between 
the near-crash and crash imminent driving states using an 
IDS study mentioned earlier [6]. Four bins of data 
containing 20 trials each were available from this study, 
which correspond to these triads of initial conditions: (R0= 
27 m, vF0= 16 m/s, aL= -3.9 m/s2), (40 m, 16 m/s, -5.4 
m/s2), (41 m, 24 m/s, -3.9 m/s2), and (60 m, 24 m/s, -5.4 
m/s2). A total of 64 data points involved a braking 
response only, which resulted in 34 crashes and 30 non-
crashes. Equation (12) approximates the imminent crash 
boundary shown in Figure 6, which was devised to capture 
about 95% of the crash data points: 

RB= 0.18×RdotB
2                                                                                   (12) 
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Figure 5. Hard Last-Second Braking Performance in Lead 
Vehicle Decelerating Scenario (85th percentile Statistics) 

As seen in Figure 6, 31 crash data points or about 91% of 
the crashes are located below the crash imminent 
boundary. On the other hand, 26 non-crash data points or 
about 87% of the non-crashes fall above this boundary. 
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Figure 6. Braking Performance in Lead Vehicle 
Decelerating Scenario from IDS Driving Simulator 

Figure 7 shows approximations of the four driving states 
based on the braking maneuver in response to the LVD 
scenario, using 85th percentile statistics of CAMP’s last-
second normal braking and hard braking trials as 
expressed respectively by Equations (9) and (11). In 
addition, the crash/non-crash boundary is drawn using 
Equation (12) based on the IDS data. The curves in Figure 
7 provide rough estimates of the boundaries between the 



 6

low risk and conflict states, between the conflict and near-
crash states, and between the near-crash and crash 
imminent states. 

Figure 8 maps the distribution of a sample of data at the 
onset of braking by a following vehicle in response to a 
lead vehicle decelerating in traffic lane ahead, as observed 
in a field operational test (FOT) of an intelligent cruise 
control (ICC) system [8]. This distribution consists of 90 
data points collected from baseline driving on state 
highways and arterials where vehicles were initially 
traveling at various speeds and ranges. Ten-Hertz video 
episodes as well as numerical data were collected for 
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Figure 7. Driving States in Lead Vehicle Decelerating 
Scenario Based on Braking Response (85th percentile 
Statistics) 

this sample. The recording of video was triggered when 
the deceleration level from brake intervention by the host 
(following) vehicle or the amount of braking level required 
to bring the host vehicle to a headway of 0.3 second 
behind the lead vehicle was equal to or greater than 0.05g. 
The average deceleration level in each braking event by 
the lead vehicle varied between 0.05 and 0.15g. 

As seen in Figure 8, the driver of the host vehicle applied 
the brakes in the low risk driving state in about 70% of the 
cases. Moreover, 22% and 8% of the braking response 
events were initiated respectively in the conflict and near-
crash driving states. The analysis of average deceleration 
level per braking event by the host vehicle, as measured 
between brake pedal press and brake pedal release, 
showed that the overall average braking level was about 
0.1g in the low risk driving state and about 0.15g in the 
conflict and near-crash states. As a result, the video 
triggering criteria in the ICC FOT captured too many 
episodes that were benign in terms of safety. The driving 
state boundaries drawn in Figure 7 could then be utilized 
as a filter for the lead vehicle decelerating episodes to 
only record safety-critical events.  
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Figure 8. Distribution of Braking Onset Data in Lead 
Vehicle Decelerating Scenario Gathered from Naturalistic 
Driving 

COMPARISON OF BRAKING RESPONSE ACROSS 
SCENARIOS 

Figure 9 compares the low risk/conflict boundary lines 
among LVS, LVM, and LVD scenarios under CAMP’s 
last-second normal braking instruction. Similarly, Figure 
10 compares the conflict/near-crash boundary lines 
among these scenarios under CAMP’s last-second hard 
braking instruction. Figure 11 compares the near-
crash/crash imminent boundary lines between the LVS 
and LVD scenarios. The phase plane (Rdot, R) analysis of 
initial braking data leads to consistent and orderly 
response patterns across many trials and conditions. As 
seen in Figures 9-11, parabolic lines approximate initial 
braking response data across scenarios and conditions. 
Generally, drivers are little less aggressive in the LVM 
scenario than in the LVS scenario based on measures of 
RB and aF. Perhaps, drivers prefer to initiate braking earlier 
so as to match the speed of the lead vehicle at a 
“comfortable” following distance. Similarly, drivers apply 
the brakes at longer separation distances in the LVD 
scenario than in the LVM and LVS scenarios especially at 
range-rate values below –5 m/s. It should be noted that 
the lead vehicle might decelerate to a stop or a lower 
speed in the LVD scenario. The quantified boundaries 
between the low risk and conflict states, between the 
conflict and near-crash states, and between the near-
crash and crash imminent driving states thus depend on 
the dynamic scenario encountered in the driving 
environment when drivers respond by braking only.  
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ANALYSIS OF LAST-SECOND STEERING 
PERFORMANCE 

RESULTS OF STEERING ANALYSIS 

Similar to last-second braking instructions, drivers were 
asked to maintain their speed and change lanes at the 
last second they normally would to go around the target 
under “normal” steering instructions, and change lanes at 
the last second they possibly could to avoid colliding with 
the target under “hard” steering instructions. During 
CAMP’s LVD steering trials, the following vehicle traveled 
at 13 and 27 m/s behind the lead vehicle. After traveling at 
a stabilized range for a brief duration, the lead vehicle 
braked at a constant deceleration of 0.15g or 0.39g with 
the brake lights activated. A total of 216 normal steering 
data points were sorted out into bins representing various 
combinations of R0, aL, and vF0 rounded respectively to 10 
m, 0.05g, and 2.2 m/s bins. This process resulted in 14 
bins, each with at least 5 combination values, which 
contained a total of 115 data points. A linear regression 
approximation of the normal steering data using the 50th 
percentile value from each bin provides the following 
relationship between the steering onset range, RS, and the 
initial conditions: 

RS= 2 – 0.91×aL + 0.11×vF0 + 0.66×R0                    (13) 

[r2 = 0.99, F-observed=  341, f0.01(3,10)= 6.55] 

Similarly, a total of 139 LVD hard steering data points 
were sorted out into bins representing various 
combinations of R0, aL, and vF0 rounded respectively to 10 
m, 0.05g, and 2.2 m/s bins. This process resulted in 14 
bins, each with at least 5 combination values, which 
contained a total of 105 data points. The linear regression 
approximation of the hard steering data based on the bin 
50th percentile values is expressed as: 

RS= -3.3 – 2.66×aL + 0.61×vF0+ 0.34×R0                 (14) 

[r2 = 0.83, F-observed=  16, f0.01(3,10)= 6.55] 

0

10

20

30

40

50

60

70

-15 -12 -9 -6 -3 0

Range Rate (m/s)

R
an

ge
 (m

)

LVS (50%-ile) LVD (85%-ile) LVM (50%-ile)

Figure 10. Comparison of Conflict/Near-Crash Lines 
among Scenarios under Hard Braking  

0
10
20
30
40
50
60
70
80

-20 -15 -10 -5 0

Range Rate (m/s)

R
an

ge
 (m

)

LVS LVD

Figure 11. Comparison of Near-Crash/Crash Imminent 
Lines between Scenarios Based on Braking Response  

To match the results against the LVD braking data, the 
bin 85th percentile statistics were obtained for normal and 
hard steering data. The linear regression approximations 
of the bin 85th percentile statistics in the normal and hard 
steering instructions are respectively: 

RS= 0.91 – 2.09×aL + 0.09×vF0 + 0.51×R0               (15) 

[r2 = 0.97, F-observed=  92, f0.01(3,10)= 6.55] 

RS= -5.8 – 2.81×aL + 0.51×vF0 + 0.33×R0                (16) 

[r2 = 0.83, F-observed=  17, f0.01(3,10)= 6.55] 

The LVD normal steering data were binned by R0 (5 m 
resolution), without accounting for aL and vF0. This process 
resulted in 15 bins that accounted for 195 data points. The 
following best-fit line equation describes the relationship 
between RS and RdotS at the steering onset of the 
following vehicle based on the 85th percentile values from 
each bin: 

RS= -3.66×RdotS + 3.97 [r2 = 0.88]                        (17) 

Figure 12 provides a scatter plot for all CAMP’s LVD 
normal steering data and plots the best-fit line for the bin 
85th percentile values. The mapping of these data points 
resulted in 83% of the points falling above the best-fit line.  
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Figure 12. Normal Last-Second Steering Performance in 
Lead Vehicle Decelerating Scenario (85th percentile 
Statistics) 

The LVD hard steering data were also binned by R0 (5 m 
resolution), without accounting for aL and vF0. This process 
resulted in 11 bins that included 105 data points. The 
following best-fit line equation describes the relationship 
between RS and RdotS under the hard-steering instruction 
based on the 85th percentile values from each bin: 

RS= -2.52×RdotS + 2 [r2 = 0.86]                               (18) 

The value of RS in Equation (18) was set to 2 m at RdotS= 
0 m/s because the best-fit line for the bin 85th percentile 
values yields negative values of RS at RdotS ≤ 0 m/s. 
Figure 13 provides a scatter plot for all CAMP’s LVD hard 
steering data and draws the best-fit line for the bin 85th 
percentile values. The mapping of these data points 
resulted in 81% of the points falling above the line 
described by Equation (18). Figure 14 shows 
approximations of the driving states based on the steering 
maneuver in response to the LVD scenario, using 85th 
percentile statistics of CAMP’s last-second normal 
steering and hard steering trials as expressed respectively 
by Equations (17) and (18). 
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Figure 13. Hard Last-Second Steering Performance in 
Lead Vehicle Decelerating Scenario (85th percentile 
Statistics) 
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Figure 14. Driving States in Lead Vehicle Decelerating 
Scenario Based on Steering Response (85th percentile 
Statistics) 

COMPARISON OF STEERING RESPONSE ACROSS 
SCENARIOS 

Figure 15 compares the low risk/conflict boundary lines 
among the three scenarios under the last-second normal 
steering instruction, while Figure 16 compares the 
conflict/near-crash boundary lines among these scenarios 
under the last-second hard steering instruction. Similar to 
initial braking data, the phase plane (Rdot, R) analysis of 
initial steering data leads to consistent and orderly 
response patterns across many trials and conditions. 
Moreover, straight lines approximate initial steering 
response data across scenarios and conditions. There is 
a slight difference among scenarios at high closing 
speeds under the last-second normal steering instruction; 
however, the observed difference is almost negligible and 
thus the steering response is independent of these 
dynamic scenarios given the approximations made to fit 
CAMP’s experimental data. Under the last-second hard 
steering instruction, the lines of the three scenarios 
overlap across all values of Rdot. It should be noted that 
the lines in Figures 15 and 16 reflect driver steering 
performance based on 50th percentile statistics in the LVS 
and LVM scenarios, and 85th percentile statistics in the 
LVD scenario. 
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Figure 15. Comparison of Low Risk/Conflict Lines among 
Scenarios under Normal Steering 
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Figure 16. Comparison of Conflict/Near-Crash Lines 
among Scenarios under Hard Steering 

COMPARISON BETWEEN INITIAL BRAKING 
AND STEERING RESPONSES 

Figures 17 and 18 compare LVD braking response to LVD 
steering response under last-second normal and hard 
maneuver instructions, respectively. Generally, onset 
braking distances are higher than onset steering 
distances in the LVD scenario especially at Rdot values 
below –5 m/s. On the other hand, this difference appears 
minimal at Rdot values over –5 m/s. It should be noted 
that the LVD results were based on 1,683 last-second 
braking trials as opposed to 300 last-second steering 
trials. Onset braking distances were also higher than 
onset steering distances in the LVS and LVM scenarios. 
Thus, the quantified boundaries of the driving states vary 
between braking and steering driver responses as 
observed from the CAMP trials. Consequently, distinct 
boundaries must be established for different driver 
responses to each dynamic scenario encountered in the 
driving environment. These results point out the need to 
design crash warning algorithms that take into account 
various types of possible driver response. For instance, a 
rear-end crash warning algorithm based on braking 
response may issue alerts too early (i.e., nuisance alerts) 
for some drivers who plan on steering and changing lanes 
to avoid the vehicle in front of them. Projects are currently 
under way to collect on-road naturalistic data that 
characterize driver response to these different driving 
situations.  
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Figure 17. Comparison between Normal Braking and 
Normal Steering Performance in Lead Vehicle 
Decelerating Scenario (85th percentile Statistics) 
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Figure 18. Comparison between Hard Braking and Hard 
Steering Performance in Lead Vehicle Decelerating 
Scenario (85th percentile Statistics) 

CONCLUSION 

A novel approach was described to define driving conflict 
states in vehicle-following scenarios based on drivers’ 
judgment of when a driving conflict or a near-crash begins 
as indicated by the initiation of last-second braking or 
steering response with normal or hard intensity, 
respectively. Moreover, the start of the crash imminent 
state is identified from crash data in the zone where all 
braking actions led to a crash. Existing driver performance 
databases were utilized to estimate the boundaries 
between the driving conflict states in LVS, LVM, and LVD 
scenarios. Mathematical equations were derived to 
quantify these boundaries using 50th percentile and 85th 
percentile statistics, which were represented by range and 
range-rate data plots for various sets of initial kinematic 
conditions. 

The median, last-second, initial braking points by following 
vehicles were observed to lie along a parabolic locus that 
approached the origin of the R versus Rdot plots. Note 
that it did not matter what the initial conditions were, the 
median braking responses were all initiated along this 
line. Of course, the subsequent trajectories would go from 
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these initial braking points back toward the origin, just as 
described in Figure 2. So, in a certain sense this locus 
could be interpreted as a measurement of the driver’s 
anticipation of the median deceleration needed to safely 
escape the scenario under the instructed last-second 
conditions, for either normal or hard braking. The 
consistency of this notion across many drivers and many 
vehicle-following scenarios lends strong support to its use 
in defining driving conflict states. 
 
Our analysis showed that the range and range-rate plots 
indicating the transitions among the various driving conflict 
states are distinct across the three scenarios based on 
last-second braking and last-second steering data. The 
validity of these boundaries was checked by examining 
onset braking data collected from naturalistic on-road 
studies. In summary, we now feel that the feasibility of 
this driver performance mapping for crash avoidance 
research has been demonstrated, and that we have 
successfully quantified most of the driving state 
boundaries in the vehicle-following scenarios. 

Additional crash/non-crash braking performance data will 
be needed to identify the transition to the crash imminent 
state in the LVM scenario. Similarly, crash/non-crash 
steering performance data are required for all three 
scenarios. Finally, the analysis presented in this paper 
addresses rear-end crashes and must be extended to 
other crash types so as to build a comprehensive crash 
avoidance research database. 

REFERENCES 

1. Smith, D.L., Najm, W.G., and R.A. Glassco, The 
Feasibility of Driver Judgment as Basis for a Crash 
Avoidance Database. Paper No. 02-3695, 
Transportation Research Record No. 1784, 
Transportation Research Board 81st Annual Meeting, 
Washington, D.C., January 2002. 

2. Smith, D.L., Najm, W.G., and A.H. Lam, Analysis of 
Braking and Steering Performance in Car-Following 
Scenarios. SAE 2003 World Congress, Paper No. 
2003-01-0283, Detroit, MI, March 2003. 

3. Najm, W.G. and J.D. Smith, Breakdown of Light 
Vehicle Crashes by Pre-Crash Scenarios as a Basis 
for Countermeasure Development. ASCE’s 7th 

International Conference on Applications of Advanced 
Technology in Transportation, Cambridge, MA, 
August 2002. 

4. Kiefer, R., LeBlanc, D., Palmer, M., Salinger, J., 
Deering, R., and M. Shulman, Development and 
Validation of Functional Definitions and Evaluation 

Procedures for Collision Warning/Avoidance 
Systems. DOT HS 808 964, NHTSA, USDOT, 
Washington, D.C., August 1999. 

5. Kiefer, R.J., Cassar, M.T., Flannagan, C.A., LeBlanc, 
D.J., Palmer, M.D., Deering, R.K., and M.A. 
Shulman, Forward Collision Warning Requirements 
Project Task 1 Final Report: Refining the CAMP 
Crash Alert Timing Approach by Examining ‘Last-
Second’ Braking and Lane-Change Maneuvers Under 
Various Kinematic Conditions. DOT HS 809 574, 
NHTSA, USDOT, Washington, D.C., January 2003. 

6. Lee, J.D., McGehee, D.V., Brown, T.L., and M.L. 
Reyes, Driver Distraction, Warning Algorithm 
Parameters, and Driver Response to Imminent Rear-
End Collisions in a High-Fidelity Driving Simulator. 
DOT HS 809 448, NHTSA, USDOT, Washington, 
D.C., March 2002. 

7. Walpole, R.E., Myers, R.H, and S.L. Myers, 
Probability and Statistics for Engineers and 
Scientists. Sixth Edition, Prentice Hall, 1998. 

8. Koziol, J., Inman, V., Carter, M., Hitz, J., Najm, 
W.G., Chen, S., Lam, A., Penic, M., Jensen, M., 
Baker, M., Robinson, M., and C. Goodspeed, 
Evaluation of the Intelligent Cruise Control System, 
Volume I - Study Results. DOT-VNTSC-NHTSA-98-3, 
DOT HS 808 969, October 1999. 

 
DEFINITIONS, ACRONYMS, ABBREVIATIONS 

aL:  Acceleration of Lead Vehicle 
BL: Lead Vehicle Braking Force 
CAMP: Crash Avoidance Metrics Partnership 
FL: Force Acting on Lead Vehicle 
FOT: Field Operational Test 
ICC: Intelligent Cruise Control 
IDS:  Iowa Driving Simulator 
LVD:  Lead Vehicle Decelerating 
LVM:  Lead Vehicle Moving at Lower Constant Speed 
LVS:  Lead Vehicle Stopped 
mL: Lead Vehicle Mass 
R:  Range 
RB: Range at Onset of Braking by Following Vehicle 
Rdot:  Range-Rate 
RdotB: Range-Rate at Onset of Braking by Following 

Vehicle 
RdotS: Range-Rate at Onset of Steering by Following 

Vehicle 
RS: Range at Onset of Steering by Following Vehicle 
R0:  Initial Range Prior to Lead Vehicle Braking 
TL: Forward Thrust Exerted on Lead Vehicle 
u: Control Input 
vF0:  Initial Speed of Following Vehicle Prior to Braking 

 


