

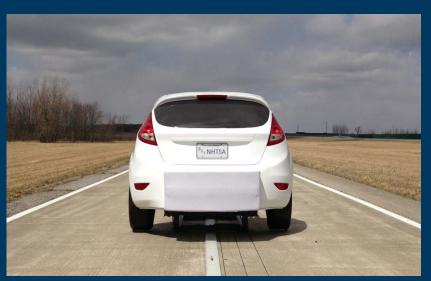
Testing Advanced Crash Avoidance Technologies with 3D Surrogate Vehicles

January 20, 2016

Garrick J. Forkenbrock NHTSA Research

Presentation Overview

- Why 3D surrogate vehicles are necessary
- Examples of tests performed with NHTSA's equipment
- Considerations for global harmonization


3D Surrogate Vehicle Relevance

- Basic AEB testing only requires surrogates be accurately representative from the rear aspect only
 - NHTSA SSV
 - Euro NCAP EVT
- Future evaluations will require more flexibility
 - Intersections
 - Approaching traffic
 - Offset rear-end crashes
 - Additional false positive scenarios
- It is not feasible or safe to evaluate such scenarios with real "target" vehicles and short time-to-collisions

Strikeable Surrogate Vehicle (SSV)

NHTSA AEB Test Using the SSV

Video removed to reduce file size

Recently Purchased Equipment

- Dynamic Research Inc. (DRI) Guided Soft Target (GST)
 - Low Profile Remote Vehicle (LPRV)
 - Micro Soft Car 360
 - Hatchback Soft Car 360
- Unique capabilities of NHTSA's LPRV
 - Compatible with heavy vehicles
 - Includes a provision for Connected Vehicle use

Video removed to reduce file size

McD Scenario (cabin view)

Video removed to reduce file size

Left Turn Across Path Scenario

Video removed to reduce file size

Left Turn Across Path Scenario (cabin view)

Video removed to reduce file size

Intersection Scenario

Video removed to reduce file size

Intersection Scenario (cabin view)

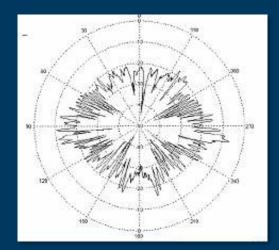
Video removed to reduce file size

Blind Spot Intervention Scenario

Video removed to reduce file size

Platform Performance

- Excellent accuracy and repeatability
- Short battery life when operated at high speed
- Shell geometry being assessed
 - Contribution to overall radar return characteristics
 - Ability to be overrun by any light vehicle


Videos removed to reduce file size

Surrogate Vehicle Radar Characteristics

- Limited evaluations indicate the Soft Car 360s and NHTSA SSV elicit nearly identical AEB performance in rear-end crash scenarios
- Industry feedback from scanning events hosted by Thatcham suggest improvements be made to further refine realism
- NHTSA will be working with MTRI to address this feedback

Safer drivers. Safer cars. Safer roads.

Harmonization

0

Need for Collaboration

- To promote harmonization of test methods, identification of a surrogate vehicle appropriate for global use is of interest to governments, testing organizations, and industry
- Collaborative research is presently underway
- Feedback explaining why specific improvements are needed is welcome and appreciated
 - The earlier these technical discussions occur the better!
 - A decision on what 3D surrogate the agency will use for advanced technology evaluations is expected later this year

Core Elements of a Global Surrogate Vehicle

• An acceptable global surrogate must safely and appropriately balance realism, durability, and ease-of-use

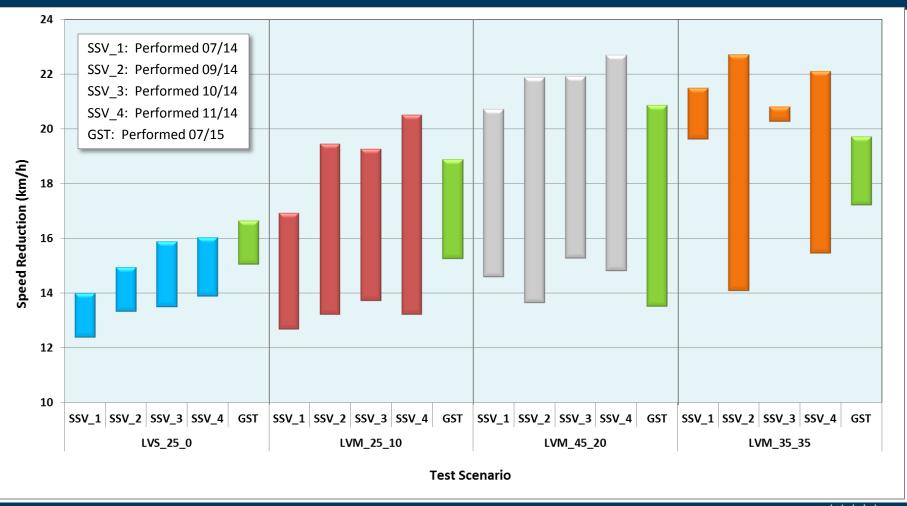
- Mounting points should be compatible with a range of robotic platforms
- When used with the global surrogate, each surrogate/platform combination should produce comparable test results

Points for Consideration

- How will findings and developments be exchanged among stakeholders in an efficient way?
- How will the effect of wear-and-tear be quantified and documented?
- When will a surrogate vehicle "design freeze" need to be imposed to best promote harmonization?
 - Will it be respected?
- What is a reasonable surrogate vehicle life cycle?
 - Technology advances may require future design changes
 - Design changes must be objectively and consistently implemented
- If the surrogate is produced at different locations worldwide, how will consistency be insured?

Garrick J. Forkenbrock garrick.forkenbrock@dot.gov www.NHTSA.gov

Safer drivers. Safer cars. Safer roads.


Bonus Slides

0

SSV vs. GST Smart ForTwo (2014 Jeep Grand Cherokee CIB Speed Reductions)

22

NHTSA www.nhtsa.gov

Blind Spot Intervention Scenario (oops!)

Video removed to reduce file size