Benefits of Vehicle Safety Communications

CICAS-V and VSC-A

Jonathan Koopmann and Bruce Wilson
Office of Surface Transportation Programs
Advanced Safety Technology Division
Presentation Overview

- Introduction to Safety Benefits
- CICAS-V Benefits
- VSC-A Benefits
- Summary and Plans
Safety: Research Questions

• Does the safety system alter crash frequency and severity?
• Is the safety system more effective in preventing some crash scenarios?
• Are there any unintended consequences?
Safety Benefits Basic Principle

Crashes Avoided = Crashes Without – Crashes With

\[\text{Crashes Avoided} = \text{Crashes Without} \times (1 - \text{Crashes With}) \]

\[N_a = N_{wo} \times SE \]

Process:

1. Break down applicable crashes to the lowest level of pre-crash scenarios where system effectiveness may vary

2. Estimate system effectiveness in each pre-crash scenario
How CICAS-V and VSC-A Safety Benefits Differ

<table>
<thead>
<tr>
<th>CICAS-V</th>
<th>VSC-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Based on data collected from a Field Operational Test (FOT)</td>
<td>• Input data from test track and modeling</td>
</tr>
<tr>
<td>• Cooperative vehicle-infrastructure system</td>
<td>• Vehicle-vehicle based system</td>
</tr>
</tbody>
</table>
Breakdown of CI CAS-V Applicable Crashes

Target Crashes → Applicable Crashes → Scenario 1 → Scenario 2 → Scenario n
Estimation of CI CAS-V System Effectiveness

Crashes Avoided = Crashes Without \times \left(1 - \frac{\text{Crashes With}}{\text{Crashes Without}}\right)

System Effectiveness SE

Determine Crashes With and Crashes Without from:

Crashes = \text{Violations} \times \text{Probability}(\text{Crash} | \text{Violation time after red})

Exposure Factor
Prevention Factor
Data Flow for CI CAS-V Safety Benefits Estimation

Sample Measures

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake reaction time to desired signal</td>
<td>Number of near violations per total number of crossings</td>
</tr>
<tr>
<td>Average deceleration</td>
<td>Number of violators</td>
</tr>
</tbody>
</table>

P(V | Performance)
(Model)

P(V | Conflict)
(Model)
P(C | V time after red)

Performance
Every time

Conflicts/Near Violations
Sometimes

Violations
Once in a while

Crashes
Once in a life time
VSC-A Safety Benefits Approach

OEMs will:

- Equip 10 vehicles with DSRC
- Develop vehicle relative positioning algorithms
- Develop warning algorithms
- Test vehicles and algorithms (no FOT!)

US DOT will:

- Help plan tests
- Receive and analyze test data
- Estimate safety benefits
Safety Benefits Model - VSC-A

$$B = \sum_{i} N_{\text{woi}} \times D(MP)_i \times \left(1 - \frac{\sum_{j} p_j x_{i,j}}{x_{i,0}}\right),$$

Parameterizing the model is the key to estimating the VSC-A safety benefit

B = number of crashes avoided

N_{woi} = Number of crashes in each scenario (from crash statistics)

$D(MP)_i$ = Deployment effectiveness (higher is better, max = 1)

p_j = probability of a specific driver response

$x_{i,j}$ = probability of a crash with specific driver response

$x_{i,0}$ = probability of a crash without specific driver response
Summary and Plans

Discussed safety benefits estimation for two DSRC-enabled systems: CICAS-V and VSC-A

Safety benefits begins with a model, which must be parameterized

CICAS-V parameterization will use FOT and additional data
 • Acquire additional data to link violations and severity to crashes
 • Identify violations, near violations and performance events in FOT data
 • Analyze driver response to situation and CICAS-V alert

VSC-A parameterization will use test data
 • Analyze test data
 • Develop representative set of crash initial conditions
 • Simulate driver/vehicle response to alert following these initial conditions
Questions/ Comments?

Jonathan Koopmann
U.S. DOT/Volpe Center
Office of Surface Transportation Programs
Advanced Safety Technology Division, RTV-3F
55 Broadway
Cambridge, MA 02142
Koopmann@volpe.dot.gov
(617) 494-2246

Bruce Wilson
Bruce.Wilson@volpe.dot.gov
(617) 494-3684