Beyond aging: the role of frailty in crash-related injuries

MARYLAND CIREN CENTER

CIREN ANNUAL MEETING SEPTEMBER 7, 2011

Overview

- Background
- Objectives/research question
- Data source/methods
- Results
- Discussion
- Conclusion

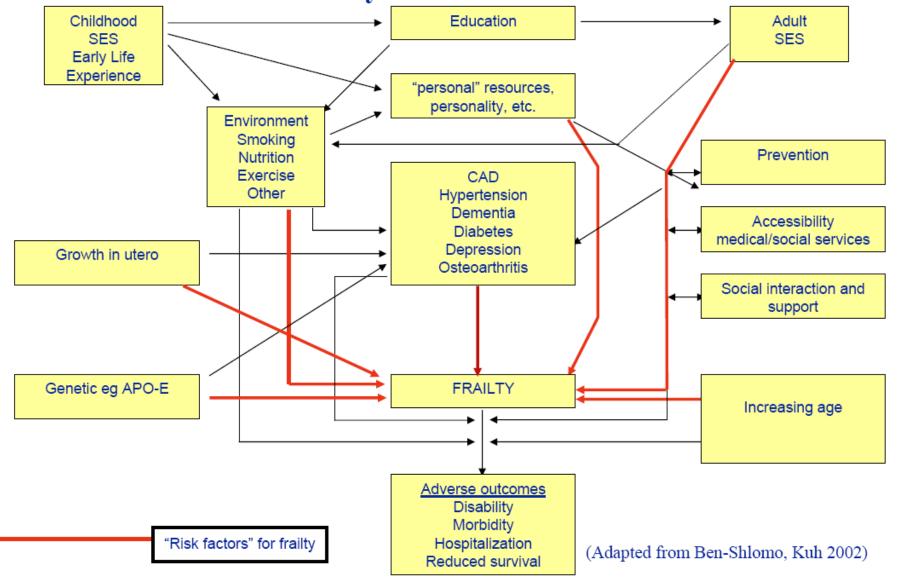
Background

 Older drivers are an area of particular interest in injury research

- Aging population
- o Co-morbidities
- o Complications
- Longer lengths of stay and higher medical charges

- Commonly used term, but difficult to define objectively
- Recent efforts have focused on identification of clinical syndrome causally related to, but distinct from, disability and comorbidity

What is frailty? (cont'd)


• Fried Model (2001), five components:

- Weight loss
- Exhaustion
- Low physical activity
- Weakness
- Slowness

• Women's Health Initiative (1991-2006)

• Vitality and physical functioning scores (SF-36) used to assess weakness, slowness, and exhaustion

Biological and psychosocial exposures across the life course in relation to frailty and its adverse outcomes

Previous CIREN Analyses

- Aging of the driving population
- Decreased MVC mortality \rightarrow focus on non-fatal outcomes
- Literature suggests: older adults \rightarrow poor outcome
- Unclear what factors affect recovery potential
- Need for standardized measures

Background

• MacKenzie (2002):

SF-36 physical and mental component summary scores
 lower one year post-MVC compared to general population

○ Excluded cases ≥60 years

• Ameratunga et al. (2006):

- compared drivers hospitalized following MVC to drivers not injured in a MVC
- 10-fold increased chance of worse self-reported health (as indicated on the SF-36) at 18-months post-injury.

Objectives I

To examine the differences in self-reported health, as measured in domains of the Short-Form-36 (SF-36), between young (ages 18-64) and old (age \geq 65) individuals prior to a MVC injury and at 6- and 12-months post-injury

Objectives II

To determine the independent effect of **advanced age**, comorbidity (the presence of 2 or more medical conditions), and the person's pre-injury self-reported functional status on the respective post-injury outcomes

- Two sites of the Crash Injury Research and Engineering Network (CIREN) study
 - Sites chosen based on the completeness of SF-36 data
- CIREN case occupants >18 years old
- Exclusions: missing baseline or follow up SF-36 values

Main Measures

• Main outcome variables:

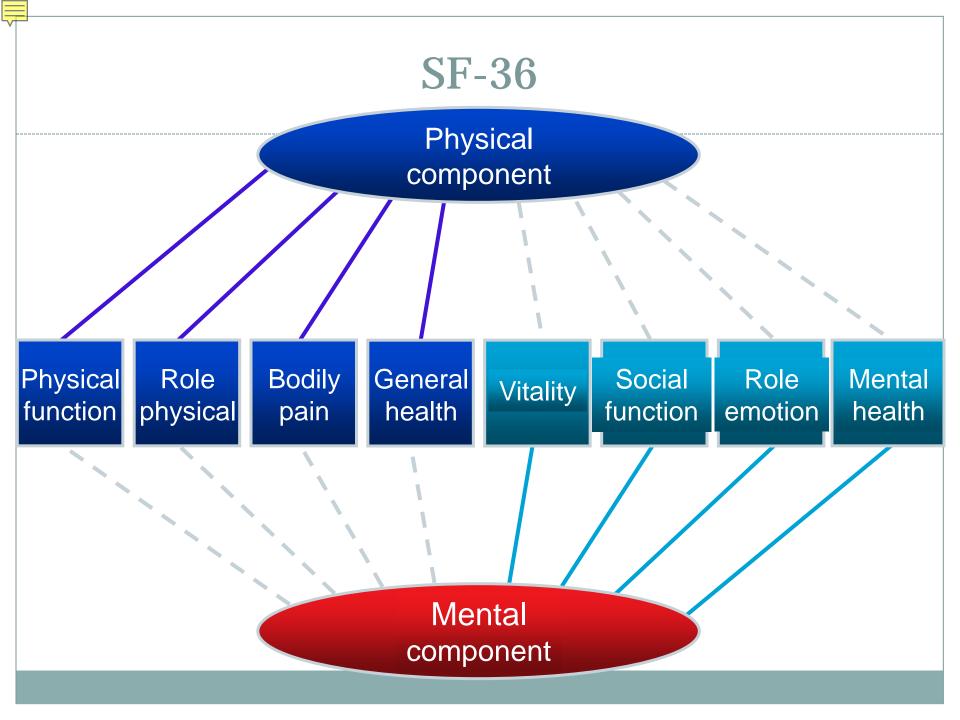
- SF-36 Scales: Physical Functioning, Vitality, and Mental Health (All on 0-100 scale)
- Initial interview in hospital 6 and 12 month interview by phone

Main predictor variable:

• Age: 18-64 vs. 65+

Measures (covariates)

• Comorbidity:


 evidence of <u>></u>2 categorized disease classes present at the injury hospital admission

• Injury Severity Score (ISS):

- Minor (1-8)
- Mild (9-15)
- Moderate (16-24)
- Severe (25+)

SF-36: Short Form 36 Health Survey

- Validated, widely used generic measure of health related quality of life
 - 8 Domains
 - × Scored 0-100; age; gender adjusted norms
 - 2 Summary Scores
 - × Physical Component
 - Measures how decrements in physical function affect day to day activities
 - Impact of physical impairment/disability
 - × Mental Component
 - Impact of mental affect, symptoms of pain
 - Facilitates comparison with other disease states

• The following items are about activities you might do during a typical day. Does your health now limit you in these activities? If so, how much?

Yes, Limited A Lot Yes, Limited A Little No, Not Limited At All

Activities

- Vigorous activities such as running, lifting heavy objects, participating in strenuous sports
- Moderate activities, such as moving a table, pushing a vacuum cleaner, bowling or playing golf
- Lifting or carrying groceries
- Climbing several/one flight of stairs
- Bending, kneeling, or stooping
- Walking more than a mile/several blocks/one block
- Bathing or dressing yourself

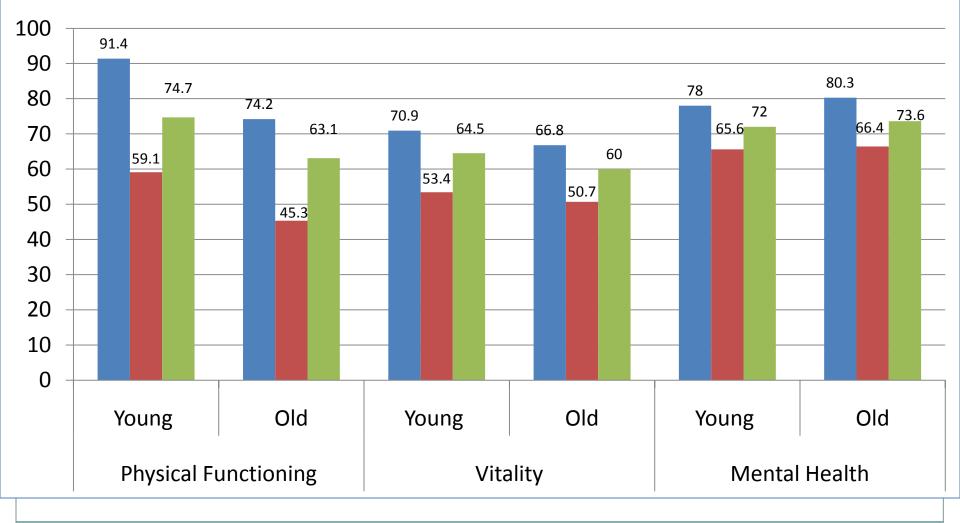
Vitality

During the past 4 weeks....

- Did you feel full of pep?
- Did you have a lot of energy?
- Did you feel worn out?
- Did you feel tired?
 - × All of the time
 - × Most of the time
 - × A Good Bit of the time
 - × Some of the time
 - × A little of the time
 - × None of the time

Statistical Analyses

 Demographic and health characteristics comparison by age group (< 65 and <u>></u> 65) using Pearson's chi-square statistics


- Unadjusted effect of age group on outcome measures at 6 months and 12 months for each of 3 domains of the SF-36 → Student's t-tests
- Multiple linear regression → association between age group and outcome while adjusting for covariates

Unadjusted Age Differences in SF-36 Scores

12-Month

Physical Functioning

	<u>6 month</u>		<u>12 month</u>		
Variable	Estimate	Р-	Estimate	Р-	
Age 18-64 (ref)					
65+	0.81	0.84	0.92	0.79	
Comorbid No (ref)					
Yes	-12.6	<.001	-10.67	<.001	
Baseline SF-36 PF*	0.56	<.001	0.65	<.001	
ISS<8 (ref)					
9-15	-6.34	0.16	-1.635	0.66	
16-24	-1.11	0.82	3.315	0.41	
25+	-9.60	0.05	-3.558	0.38	

Ref=referent; ISS = Injury Severity Scale; Estimate refers to the parameter estimate in multivariate linear regression models *Refers to the baseline value for the respective outcome measure in each analysis 23

Limitations

- CIREN selection criteria and methodology:
 - Not a random sample
- Non-inclusion of other CIREN sites
- Lack of SES adjustment
- Secondary data analyses
 - Limited by available data
 - Unable to compare age groups among "older adults"

Conclusion

• SF-36 trajectories similar for the two age groups

- Advanced age was associated with worse self-reported health in physical functioning and vitality
- Age association not a significant indicator of outcomes when comorbidities, pre-injury health status, and injury severity were considered

Conclusion

- Pre-injury self-reported physical functioning, vitality score, mental health and comorbidities influenced the self-reported functional status at 6 and 12 months postinjury
- Injury severity influenced the physical functional status at 6 months only

Discussion

- Age itself is not a significant predictor of the potential for recovery when other age-associated conditions are considered!!!!
- Age differences in outcomes mediated by comorbidities and pre-injury functional status:
 - Need to be accounted for in functional outcome research following vehicular injuries
- Older patients require rehabilitation efforts focused more on physical domains of functioning

ROLE OF FRAILTY IN INJURY CAUSATION??

• The purpose of this analysis was to examine the role of frailty in injury causation.

Research Question

Case / Control (frail/non-frail)

- Are the crash, occupant, vehicle and injury characteristics among those who are frail different than among those who are not frail?
- Is frailty associated with physical characteristics (age, BMI) or specific injuries (fractures, TBI)?

Data Source

• CIREN dataset

Baseline SF-36 scores

• Within 2 weeks of admission date

• Physical functioning (PF) score < 75

Data Limitations

All subjects are injured in at least one body region

Incomplete data capture

- Varies by enrolling center
- Baseline evaluation ranges from date of admission to 4 months post-admission
- Could not include all centers in analysis
 Unable to identify baseline values for all cases

Study definition of frailty

• CIREN is unable to account for weight loss or low physical activity

SF-36 metrics previously used

- o Vitality
- Physical functioning
- This study evaluated physical functioning alone as a frailty <u>marker</u>

Definition of frailty marker

- Higher correlation found between lower physical functioning scores and crash circumstances
 - Comparing low PF only, low VS only, low PF and low VS, all normal

CIREN Population

• Total CIREN cases = 4,380

- PFS<75 only = 116 (2.7%)
- VS<55 only = 174 (4.0%)
- PVS<75 and VS<55 = 121 (2.8%)
- Both above = 1,325 (30.2%)
- Missing baseline score = 2,644 (60.4%)

• Total with baseline PFS = 1,747

Frailty Categories (N=1,736)								
	PFS<75 only (%)	VS<55 only (%)	Both less (%)	Both over (%)				
Age								
<50	32.8	76.4	34.7	68.2				
Gender								
Male	34.5	43.7	34.7	48.6				
BMI								
Underweight/Normal	32.0	39.7	34.7	44.2				
Comorbidities								
3+	56.9	34.5	62.8	20.5				
Injury Type								
Femur fracture	12.1	16.1	17.4	15.6				
Multiple rib fractures	37.9	23.0	42.2	25.2				

Final definition

• Use PFS < 75 to identify cases with frailty markers

Compare those 'frail' case occupants with all others
 Crash characteristics
 Injuries sustained

Results

Crash/vehicle circumstances

- o Delta V
- Crash type
- Restraint use

Descriptive Statistics: Crash			
(N=1,747)			
		PFS<75 (%)	P-value
Delta V			
	<45	17.4	
	45+	9.0	<0.01
Crash Type			
	Frontal	15.9	
	Near side	11.6	
	Far side	14.6	
	Rollover	6.9	0.02
Belt Use			
	Yes	13.5	
	No	14.0	NS

Results

Person/injury circumstances

- o Age
- Gender
- o BMI
- Comorbidities (number)
- o ISS
- o MAIS

Descriptive Statistics: Occupant (N=1,747)		
	PFS<75 (%)	P-value
Age		
<55	8.5	
55+	27.1	<0.01
Gender		
Male	16.8	
Female	10.3	<0.01
Comorbidities		
0-1	11.6	
2+	46.7	<0.01

Descriptive Statistics: Occupant (N=1,747)		
	PFS<75 (%)	P-value
BMI		
Underweight	17.1	
Normal	10.6	
Overweight	11.6	
Obese	19.3	
Extremely obese	24.4	< 0.01
BMI		
Normal/Overweight	11.0	
Underweight/Obese/Extremely Obese	20.1	<0.01

Descriptive Statistics: Injury (N=1,747)			
		PFS<75 (%)	P-value
ISS			
	<16	14.6	
	16+	12.9	NS
MAIS 3+			
	Head	10.1	0.04
	Face	9.3	NS
	Neck	0.0	0.03
	Thorax	15.0	NS
	Abdomen	10.7	NS
	Spine	9.3	0.04
	Upper Extremity	13.4	NS
	Lower Extremity	14.6	NS

Recap

- Frailty \rightarrow Injury
- CIREN does not have a control group (uninjured people)

Analytical approach

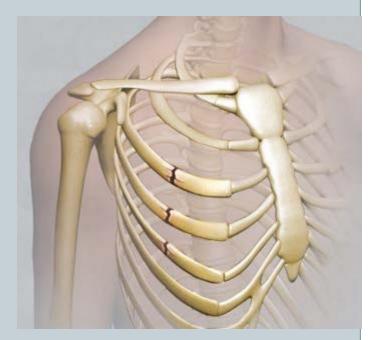
- 1. Frailty → delta v for specific injuries (adjusting for crash and occupant characteristics):
 - × Head
 - **Rib fractures**
 - **Femur fracture**

Frailty association with log delta v: Head

Head (AIS 3+)	Coefficient	P-value
Age	-0.175	0.145
Gender	-0.097	0.368
Comorbidity count	0.048	0.814
BMI	-0.116	0.451
Frailty	-0.245	0.259

Belted occupants, frontal crash only Comorbidity count 0-2 vs 3+ Frailty (PF<75 vs 75+) Agegrp (<55 vs 55+) Gender (men vs women) BMI (normal/overweight vs other

Frailty association with log delta v: Multiple ribs


Multiple rib fractures	Coefficient	P-value
Age	-0.00174	0.21
Gender	-0.01839	0.79
Comorbidity count	-0.00174	0.99
BMI	0.00098	0.99
Frailty	-0.18775	0.04*

Belted occupants, frontal crash only Comorbidity count 0-2 vs 3+ Frailty (PF<75 vs 75+) Agegrp (<55 vs 55+) Gender (men vs women) BMI (normal/overweight vs other

Frailty association with log delta v: Multiple ribs

- For person with multiple rib fractures:
 - PFS≥75 (n=102) mean dV = 47.1 • PFS< 75 (n=26) mean dV = 39.1 p=.03

Frontal crashes, belted occupants

Similar trend for Head AIS3+ injuries but n is much smaller for selection group

Frailty association with log delta v: Femur

Femur fracture	Coefficient	P-value
Age	-0.032	0.71
Gender	-0.047	0.51
Comorbidity count	0.119	0.47
BMI	-0.020	0.79
Frailty	-0.099	0.35

Belted occupants, frontal crash only Comorbidity count 0-2 vs 3+ Frailty (PF<75 vs 75+) Agegrp (<55 vs 55+) Gender (men vs women) BMI (normal/overweight vs other

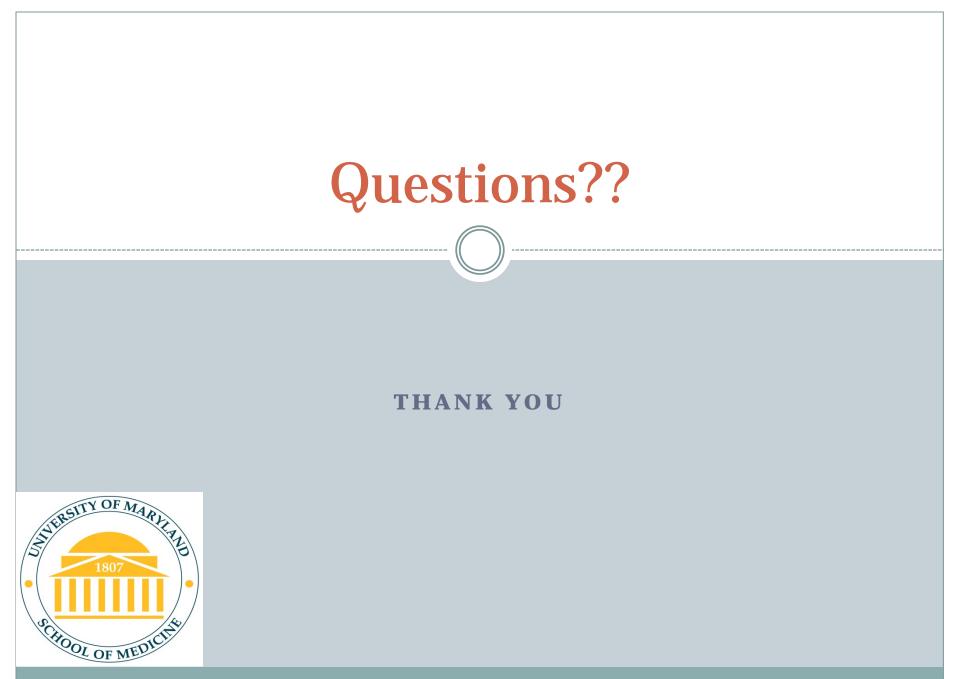
Although unable to identify frail occupants

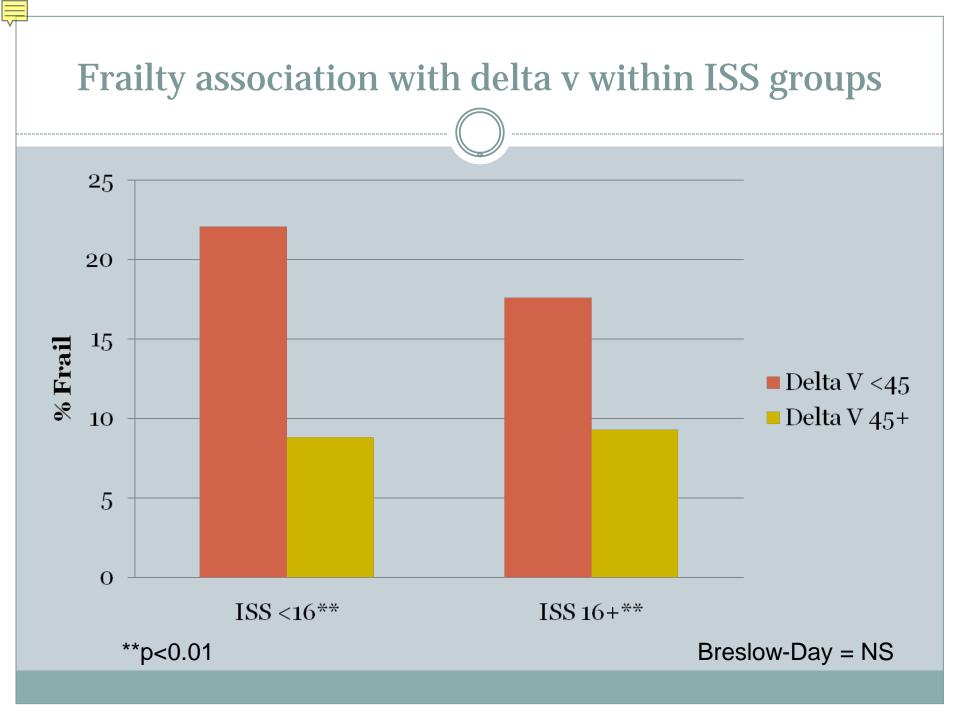
- Use low PF scores as a marker
 - × Higher correlation than VS
 - × Need better identifiers for frailty and more complete data

Conclusions

- Frailty metrics are crucial and difficult to apply
- Systems with detailed injury and kinematics data should capture frailty indices for evaluation
- Physical functioning scores, while correlated with frailty characteristics, are not significantly associated with injury outcomes

Implications


- Focus on mitigating crash and injury characteristics that more likely will occur among the growing number of frail vehicular occupants.
- Need to develop more objective anatomic/physiologic correlates of frailty that could better account for putative association


Future Directions

 Larger sample / Improve SF-36 completion rates

- Collaboration with other facilities for follow-up
- More robust measures, including biochemical markers for prospective analyses

 Predictive models of poor long-term outcomes in older MVC victims

Frailty association with delta v within ISS groups

• Delta v is significantly associated with frailty

• A higher proportion of people injured at the lower delta v were frail

This association exists at all levels of ISS