

Investigation of the Safety Effects of Knee Bolster Airbag Deployment in Similar Real-World Crash Comparisons

Weaver et al. (WFU CIREN), 2013

- CIREN KBAB cases (9) were compared to non-KBAB cases (22) of the same vehicle model using a similarity scoring algorithm
- Reduction in femur fractures was observed in KBAB occupants (p-value = 0.036) but increases in proximal tibia/fibula and foot/ankle fractures were observed in KBAB occupants (p-values = 0.022 and 0.002, respectively).

The association between knee airbag deployment and knee-thigh-hip fracture injury risk in motor vehicle collisions: A matched cohort study

Vijal Patel^a, Russell Griffin^{a,c}, Alan W. Eberhardt^b, Gerald McGwin Jr.^{a,c,+} ^a Center for Injury Sciences at UAB, Department of General Surgery, University of Alabama at Birmingham, Birmingham, AL, United States ^b Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States ^c Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States

- CIREN and NASS (2000-2009) matched cohort study, frontseat occupants in frontal collision
- Occupants exposed to KAB were matched to occupants with no KAB based on age, sex, belt use, seating position, vehicle body type, collision impact, and sampling weight.

	KAB deployed (n - 277)	No KAB deployed ^a (n - 277)	cRR (95% CI) ^b	aRR (95% CI)
Any lower extremity fracture	33(11.9)	40(14.4)	0.83 (0.52-1.31)	0.87 (0.51-1
Knee-thigh-hip fracture	18(6.5)	26(9.4)	0.69 (0.38-1.26)	0.71 (0.36-1.
Hip fracture	11(4.0)	13(4.7)	0.85 (0.38-1.89)	0.72 (0.26-1.
Thigh fracture	9(3.2)	13(4.7)	0.69 (0.30-1.62)	0.81 (0.32-2.
Knee fracture	2(0.7)	4(1.4)	0.50 (0.09-2.73)	1.13 (0.13-9.
Tibia/fibula fracture	15(5.4)	14(5.1)	1.07 (0.52-2.22)	1.23 (0.52-2.
Foot fracture	14(5.1)	11(4.0)	1.27 (0.58-2.80)	1.96 (0.72-5.

Leg Injury Hypotheses - KAB

1. KAB causes injuries in **Out-of-Position** scenarios.

6

9/16/2014

Occupant Information	Age [years]	Gender	Height [cm]	Weight [kg]
	41	F	160	68
Injury	MAIS	ISS	Restraints	
Information	5	30	• Unbelted/DAB/KAB	

Additional Factors to Consider

- Dynamic Tests
- Reaction force with brake pedal
- Inflator characteristics
- Bag geometry, folding, and deployment path

