UPDATED ANALYSIS OF THE EFFECTS OF PASSENGER VEHICLE SIZE AND WEIGHT ON SAFETY

R.M. Van Auken and J.W. Zellner
Dynamic Research Inc.

Presented to the
NHTSA Mass-Size-Safety Symposium
Washington D.C.
25 February 2011
TOPICS

1. Overview of Past DRI studies
 A. Cross-sectional analyses primarily based on Kahane (1997) methods
 B. Fleet multi-body computer simulations
 • 2004, 2007

2. New DRI “Phase 1” Study
 • Update the DRI (2004, 2005) analysis based on Kahane (2003) methods and data
 • Investigate why DRI (200x) and Kahane (2003) results are different
TOPICS

3. Planned DRI “Phase 2” Study
 • Update the DRI analysis based on NHTSA’s shared databases (i.e., updated to the 2008 model year and calendar year)

4. Potential DRI “Phase 3” Study
 • Will review and investigate forthcoming Kahane (2011) methods and results
 • Are there differences between Kahane (2011) and DRI (2011)?
 • Investigate other analytical approaches that may be appropriate
 • Are there clear drivers of safety? (weight, size, etc.)
TERMINOLOGY

A – Number of accidents
F – Number of fatalities
VRY – Number of vehicle registration years
VMT – Number of vehicle miles traveled
IE – Number of induced-exposure cases

- Non size and weight related crashes, for purpose of determining vehicle exposure, including driver and environmental factors
- Two types:
 “Stopped vehicle” – as determined by Kahane (1997)
 “Non-culpable vehicle” – as determined by Kahane (2003)
1) OVERVIEW OF PAST DRI STUDIES

A. DRI Cross-Sectional Studies of US Accident Data

<table>
<thead>
<tr>
<th>Year</th>
<th>Methods</th>
<th>Body Types¹</th>
<th>Result Size and Weight</th>
<th>Rate</th>
<th>Data</th>
<th>States</th>
<th>Method</th>
<th>Report/Docket</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>Based on Kahane (1997) Chapters 3 and 4</td>
<td>All PC All LTV²</td>
<td>F/A A/VRY Wheelbase Track</td>
<td>F/A A/IE IE/VRY</td>
<td>Disaggregated</td>
<td>7</td>
<td>Logistic Regression</td>
<td>DRI-TR-03-01 NHTSA-2003-16318-3</td>
</tr>
</tbody>
</table>

Note:
1. Main results
2. All LTV except large vans

“Aggregated” data are data grouped by make-model-year, etc.
“Disaggregated” data are data for individual cases
DRI 200x studies were based on 1995 to 1999 CY data.
1) OVERVIEW OF PAST DRI STUDIES

A. DRI Cross-Sectional Studies of US Accident Data

- Passenger car results, as of 2005 (DRI 2005 Figure 10)

 Wheelbase and track reduction is harmful
 Weight reduction is not harmful
 Overall size and weight reduction result agrees with Kahane (2003)

Note: DRI error bars are ± 2-sigma, based on various assumptions, and do not include all sources of uncertainty
1) OVERVIEW OF PAST DRI STUDIES

A. DRI Cross-Sectional Studies of US Accident Data

- **Passenger car results**

![Bar chart showing estimated net change in US fatalities](chart.png)

- **Updated figure based on information in MY 2011 CAFE FRIA (Docket NHTSA-2009-0062-0004)**

- **DRI curb weight and track results do not agree with NHTSA results (i.e., 3rd vs 4th set of red and blue bars)**

Note: DRI error bars are ±2-sigma, based on various assumptions, and do not include all sources of uncertainty.
1) OVERVIEW OF PAST DRI STUDIES

B. Fleet Multi-Body Computer Simulations

- Investigate the effects of
 - Reduced weight SUV, holding size constant
 - Increase length SUV, holding weight constant

Using lightweight material substitution

- On crashworthiness and compatibility (F/A)
- Not crash avoidance (A/VRY)

- Using crash simulations of 499 US crashes
1) OVERVIEW OF PAST DRI STUDIES

B. Fleet Multi-Body Computer Simulations (cont’d)

• Results

<table>
<thead>
<tr>
<th>Equivalent Life Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td>Reduced Weight</td>
</tr>
<tr>
<td>Increased Length</td>
</tr>
</tbody>
</table>

Subject Vehicle

• Conclusions very similar to the DRI statistical results
 • SUV weight reduction of 20% has an overall benefit
 • SUV crush zone length increase of 20% has a larger overall benefit

• Methods and results are further described in DRI-TR-04-04-2 (Docket NHTSA-2003-16128-1452)
2) **DRI PHASE 1 STUDY**

A. Objectives

B. Methods

C. Preliminary Results
2.A) DRI PHASE 1 OBJECTIVES

Compare DRI’s and Kahane’s Results

a) Reproduce and confirm Kahane’s past results:
 i. Databases
 ii. Methodologies

b) Comment on the key differences
Update the DRI Databases to More Closely Match Kahane (2003)

- Added 2000 CY databases (FARS, state, registrations)
- Added PA accident data
 - Needed to better represent low fatality states and reduce Induced-exposure case weightings
- Total number of “state-years” increased from 34 to 44
- Update vehicle curb weight data based on Kahane (2003)
- Newer vehicles (in progress)
Update the DRI Methods to More Closely Match Kahane (2003)

- New analysis software was developed to attempt to more closely replicate the Kahane (2003) methods
 - Single stage weighted logistic regression
 - The “non-simultaneous” two-step regressions for F/IE and IE/VRY, with different (“mismatched”) control variables in each stage, used in DRI (2003), has been eliminated
 - US (or state) level IE registration weightings and fatalities
 - New control variable definitions (e.g., NITE)
 - New induced-exposure definition
 - “stopped” vehicle → “non-culpable” vehicle
 - New fatal crash type definitions
 - Added 3-, 4- vehicle fatal crashes
- Variance Inflation Factor (VIF) is also calculated, as suggested by Kahane and other researchers
Possible Sources for Differences Between DRI and Kahane (2003, 2010) Results

- Differences in databases
 - Addressed by updating databases, to the extent possible
- Differences in data reduction details
- Differences in analysis methods
 - "NHTSA believes that the analysis method is the issue, not the database" (Kahane, 2010, p 502)¹
 - Kahane (2003, 2010) used a one-step, single-stage method for F/VRY (and F/VMT)
 - DRI used “non-simultaneous” regressions for F/IE and IE/VRY, with different control variables in each stage

¹Kahane, CAFE_2012_2016_FRIA_04012010.PDF, 2010
Possible Sources for Differences (cont’d)

- The “non-simultaneous” multiple-stage method used by DRI (200x) for F/IE x IE/VRY, which was adapted from Kahane (1997) Chapters 3 and 4, has mismatched control variables

Red shading indicates mismatched control variables

<table>
<thead>
<tr>
<th>Regression Coefficient</th>
<th>Stage Ln(F/IE)</th>
<th>Stage Ln(IE/VRY)</th>
<th>Combined Ln(F/VRY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCPT</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>CURBWT</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>WHEELBAS</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>TRAKWDTH</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>YOUNGDRV</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>OLDMAN</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>OLDMWOMAN</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>FEMALE</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>NITE</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>SPDILIM55</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>CONVRBL</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>TWODOOR</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>STAWAGON</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>VEHAGE</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>BRANDNEW</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>IL</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>MD</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>MO</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>NM</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>NC</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>OH</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>CY1996</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>CY1997</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>CY1998</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>CY1999</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>ABS4</td>
<td>A</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>AWD</td>
<td>A</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>FWD</td>
<td>A</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>WET</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>SNOW ICE</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>DRAIRBAG</td>
<td>A</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>RFAIRBAG</td>
<td>A</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>RURAL</td>
<td>0</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>IL-CYZ96</td>
<td>0</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>OH-CY98</td>
<td>0</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>
In order to better understand the differences between the DRI and Kahane results we need to compare all of estimated regression coefficients.

Overall trends are very similar

Quantifiable Differences
DRI is using the following figures-of-merit to compare all estimated regression coefficients:

\[
\text{Root Mean Square} = \sqrt{\frac{1}{n} \sum \Delta_i^2}
\]

\[
\Delta_i^2 = \frac{(b_{i,B} - b_{i,A})^2}{s_i^2}
\]

- Where \(\Delta > 2 \) indicates a statistically significant difference, based on various assumptions and does not include all sources of uncertainty.

- **Example Results: Passenger Cars**

<table>
<thead>
<tr>
<th>Crash Type</th>
<th>Size and Weight Variables</th>
<th>Control Variables</th>
<th>Total</th>
<th>Number of Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Rollover</td>
<td>2.4</td>
<td>31.5</td>
<td>33.9</td>
<td>16</td>
</tr>
<tr>
<td>Hit Object</td>
<td>12.9</td>
<td>147.1</td>
<td>160.0</td>
<td>17</td>
</tr>
<tr>
<td>Ped-bike-motorcycle</td>
<td>22.1</td>
<td>60.5</td>
<td>82.6</td>
<td>16</td>
</tr>
<tr>
<td>Hit big truck</td>
<td>16.6</td>
<td>140.8</td>
<td>157.4</td>
<td>17</td>
</tr>
<tr>
<td>Hit passenger car</td>
<td>17.6</td>
<td>88.1</td>
<td>105.7</td>
<td>17</td>
</tr>
<tr>
<td>Hit light truck</td>
<td>14.7</td>
<td>85.3</td>
<td>99.9</td>
<td>17</td>
</tr>
<tr>
<td>Root Mean Square</td>
<td>2.68</td>
<td>2.49</td>
<td>2.52</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: The size and weight variables are UNDRWT00 and OVERWT00.
1) Differences between the DRI (2003) “simultaneous 3-way 2-stage” and 1-stage logistic regression results for $F/IE = F/A \times A/IE$*

These results indicate that the results for the “simultaneous 3-way 2-stage” method are not statistically significantly different from the more traditional 1-stage method

*All 1985 to 1998 MY Passenger Cars, 1985 to 1997 MY LTVs excl. Large Vans
PRELIMINARY DRI PHASE 1 COMPARISON RESULTS (CONT’D)

• These results indicate that the “non-simultaneous” 2-step method may be one source of difference between the DRI and NHTSA results. This is attributed in part to the different control variables used in the different regression steps.

*All 1985 to 1998 MY Passenger Cars, 1985 to 1997 MY LTVs excl. Large Vans
3) Differences between the DRI “Kahane (2003) Like” weighted 1-stage logistic regressions and the corresponding Kahane (2003) results* were reduced

\[\Delta_i = \frac{(b_{i,B} - b_{i,A})^2}{s_i^2} \]

\[\text{R.M.S.} = \sqrt{\frac{1}{n} \sum_{i} \Delta_i^2} \]

*1991 to 1998 MY 4-Door Passenger Cars, 1991 to 1997 MY LTVs
3) The differences between the DRI and Kahane (2003) results were reduced by:

- Changing the induced-exposure cases
 - From “stopped” vehicle to
 - To “non-culpable” vehicle
- Changing fatal crash types
 - Adding 3 and 4 vehicle crashes
- Adding 2000 FL induced-exposure data (a high fatality rate state)
- Adding PA induced-exposure data (a low fatality rate state)
- Changing curb weight data
 - From DRI (2002) values (TR-02-02 Appendices)
 - To Kahane (2003) values (Appendices)
- Numerous other minor changes
3) Possible sources for the remaining differences between the DRI and Kahane (2003) results include:

- Differences in vehicle model years (e.g., 1999 MY) (in progress)

 Not resolvable without more information

- Differences in other vehicle parameter data (e.g. ABS installation rates)

- Differences in the control variables derived from the FARS and state data (e.g., Florida RURAL)

- PA induced-exposure cases are heavily weighted, due to difficulty in determining the non-culpable vehicles

- Differences in large truck vs unknown vehicle type identification

- Non-Police Caprice and Crown Victoria registrations
PRELIMINARY DRI PHASE 1
US FATALITY RESULTS

4-Door Passenger Cars (excluding police cars)

- Effects of curb weight, wheelbase, and track reduction

Results tend to converge on the Kahane (2010) results if we use “non-culpable” vehicle and “3,4” vehicle crashes

The results are very sensitive to the control variables used, and induced-exposure and fatal crash type definitions

Note: DRI error bars are ±2-sigma, based on various assumptions, and do not include all sources of uncertainty
PRELIMINARY DRI PHASE 1
US FATALITY RESULTS

4-Door Passenger Cars (excluding police cars)

- Effects of curb weight and footprint reduction

Results tend to converge on the Kahane (2010) results if we use “non-culpable” vehicle and “3,4” vehicle crashes.

The curb weight and footprint results are very sensitive to the induced-exposure and fatal crash type definitions.

Note: DRI error bars are ±2-sigma, based on various assumptions, and do not include all sources of uncertainty.
Light Trucks and Vans

- Effects of curb weight and footprint reduction

- Results tend to converge on the Kahane (2010) results if we use “non-culpable” vehicle and “3,4” vehicle crashes

- The curb weight results are very sensitive to the induced-exposure and fatal crash type definitions

Note: DRI error bars are ±2-sigma, based on various assumptions, and do not include all sources of uncertainty
Variance Inflation Factor (VIF) is a measure of multicollinearity

- Large values indicate more multicollinearity
- Allison (1999), p 50
 - Begins to “get concerned” if VIF is greater than 2.5
- Menard (2002), p 76
 - VIF greater than 5 is “cause for concern"
 - VIF greater than 10 “almost certainly indicates a serious multicolinearity problem"
- O’Brien (2007)
 - “Values of the VIF of 10, 20, 40, or even higher do not, by themselves, discount the results of regression analyses”
 - “it may be reasonable to eliminate or combine highly correlated independent variables, but doing this should be theoretically motivated.”
PRELIMINARY DRI PHASE 1
VARIANCE INFLATION FACTOR RESULTS

Maximum VIF values for the main DRI (200x) regression results

- Curb weight has the largest VIF
- This suggests that the curb weight variable is redundant with other variables in the regression and should be eliminated
PRELIMINARY DRI PHASE 1 CONCLUSIONS

<table>
<thead>
<tr>
<th>Issue</th>
<th>Impact on Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Non-Simultaneous” 2-Stage vs 1-Stage with mismatched control variables (e.g., F/IE x IE/VRY vs F/VRY with ABS4 vs RURAL)</td>
<td>Large</td>
</tr>
<tr>
<td>Induced-exposure definition (i.e., stopped vs non-culpable vehicle)</td>
<td>Large</td>
</tr>
<tr>
<td>High state induced-exposure case weighting (due to too few induced-exposure states per Hi/Lo fatality state group)</td>
<td>Medium</td>
</tr>
<tr>
<td>Fatal crash type definition (i.e., crashes involving 3 or 4 vehicles)</td>
<td>Medium</td>
</tr>
<tr>
<td>US vs State level induced-exposure weighting and fatalities</td>
<td>Small</td>
</tr>
<tr>
<td>Identification of other vehicle types (MC, Large Truck, Unknown)</td>
<td>Small</td>
</tr>
<tr>
<td>2000 Calendar Year Data</td>
<td>Small</td>
</tr>
<tr>
<td>DRI 2002 vs Kahane 2003 curb weight data</td>
<td>Small</td>
</tr>
<tr>
<td>NM vs UT induced-exposure data</td>
<td>Assume small</td>
</tr>
<tr>
<td>2000 Model Year Data</td>
<td>Assume small</td>
</tr>
<tr>
<td>“Simultaneous 3-Way 2-Stage” vs 1-Stage with matched control variables (e.g., F/A x A/IE vs F/IE)</td>
<td>Very small</td>
</tr>
<tr>
<td>Other vehicle parameter data (e.g., track, %ABS)</td>
<td>Unknown</td>
</tr>
<tr>
<td>State control variable data reduction (e.g. FL RURAL)</td>
<td>Unknown</td>
</tr>
</tbody>
</table>
DRI PHASE 1
RECOMMENDATIONS

• Need Better Access and Disclosure to Compare Studies
 • Common, accessible and downloadable databases
 • Common definitions for key factors
 • Better disclosure of data reduction methods (e.g., state data reduction, vehicle parameter data)
 • Better disclosure of results (e.g., all regression coefficients, estimated confidence intervals, VIF)
• If small changes in methodologies change results...
 • Perhaps the effect of weight is too small in comparison to other factors (e.g., safety technologies)
Objectives

• To further update the analysis based on most recent calendar year data and model year vehicles (e.g., to 2008 model year and calendar year)

• Status
 • Have discussed with NHTSA and others the need to define and make the NHTSA data publically available
 • Access to detailed NHTSA methods and algorithms has yet to be discussed
Objectives

- To review and investigate forthcoming Kahane (2011) methods and results

- Investigate other analytical approaches that may be appropriate, e.g.,
 - Predictive fits and “parsimonious” models (i.e., PRESS type statistic)
 - Sensitivity analyses, e.g., model should be relatively insensitive to changes in:
 - “Non-culpable vehicle” vs “stopped car” induced-exposure definitions
 - Vehicle model years
 - Vehicle types (i.e., 2-door cars)
 - Vehicles with high portions of high-strength steel and lighter weight versus conventional designs
 - Other world regions
 - Etc.
3) OVERALL OBSERVATIONS

1. A robust factor (e.g., curbweight) should be relatively insensitive to the exact data and methods used, however;

2. Following more exactly the changes made between the Kahane (1997) and Kahane (2003) methods has a large effect on the relative outcomes, and also explains much of the difference between the Kahane (2003) and DRI (200x) results.

3. To facilitate identifying robust factors requires:
 - Use of a common database including data for:
 - Induced-exposure (expected)
 - Police-reported accidents (unknown)
 - Vehicle parameters (unknown)
 - Awareness of exact data reduction algorithms used (unknown)