RESEARCH & EVALUATION
Vehicle Safety Research
Vehicle Safety
The Office of Vehicle Safety Research and supports U.S. DOT’s and NHTSA’s safety goals by conducting research and safety testing of motor vehicles and motor vehicle equipment.
NHTSA’s recently published vehicle safety reports are listed chronologically below.
Title | |
---|---|
Vehicle Assessment Using Integrated Crash Avoidance and Crashworthiness Pedestrian Safety Test ProceduresThe objective of this study was to test a set of vehicles using both pedestrian automatic emergency braking (PAEB) and crashworthiness (CW) test protocols to evaluate ways in which the results of each test condition can be used to inform and, if necessary, refine, the test conditions and/or performance requirements of the other. PAEB test track results were used to determine CW head and leg impact speeds and locations, and CW test results were used to help understand minimum speed reduction requirements for PAEB tests. Secondary goals of this study were to explore a method for evaluating contact-induced safety features (i.e., deployable hood systems) and provide an improved overall picture of a vehicle’s expected real-world performance. |
DOT HS 813 521 |
Pedestrian Safety: Assessment of Crashworthiness Test ProceduresThe objective of this study was to use finite element pedestrian and vehicle models to evaluate pedestrian interactions with vehicles equipped with pop-up hoods. A virtual database of pedestrian impacts was generated with a wide range of vehicle front-end geometries. Prediction models were developed for pedestrian head impact time (HIT), which is important to evaluate the response time of pop-up hood designs. Effects of pop-up hood design parameters on pedestrian head injury responses were ultimately investigated. Generic vehicle models used in Euro NCAP were morphed into 20 U.S. vehicle front-end geometries. A total of 240 pedestrian impact simulations were conducted using the morphed GV models with four sizes of pedestrian human body models at three impact speeds. A set of predictors were selected based on the literature to predict HIT, head contact velocity, and head contact angle. Simulations with the pop-up hood design found that a deployed hood could potentially collapse due to the kinetic energy of a pedestrian. Among the selected design parameters, actuator stiffness was the biggest contributor to avoiding collapse. Due to variations in kinetic energy provided by different size pedestrians, the deployment system of a pop-up hood needs to be designed for the highest pedestrian stature to avoid hood collapse. With deployment system design as per the highest pedestrian stature, the head injury criterion for a smaller pedestrian may slightly increase but is still lower compared to an undeployed hood for the vehicle used in this study. |
DOT HS 813 518 |
Pilot Study of Driver Use of A Camera-Based Visibility System Versus MirrorsThis report describes research on camera-based visibility systems, also referred to as camera-monitor systems (CMSs), and whether they can be used as safely as existing Federal Motor Vehicle Safety Standard No. 111 compliant outside rearview mirrors. CMSs are designed to be either a supplementary or alternative means to provide drivers with the rearward field of view currently afforded by mirrors. To address research questions in NHTSA’s Advance Notice of Proposed Rulemaking regarding whether CMSs have the ability to provide equivalent information to and ease of use as rearview mirrors, a human subjects experiment was performed examining drivers’ eye gaze behavior and driving performance in a light vehicle with rearview mirrors versus a prototype CMS. |
DOT HS 813 483 |
Assessment of Headlamp Aim for New VehiclesThis report summarizes an evaluation of new vehicle headlamp vertical aim angle state, or how well a new vehicle’s headlamps are aimed at the time of vehicle delivery to the purchaser. Using the inspection method from SAE J599 determined the vertical headlamp aim angle for a set of 15 vehicles. This procedure involves shining the lower beam headlamps at a screen and determining the location of the gradient cutoff location. The headlamp aim was measured for both passenger and driver side headlamps. Vehicles’ lower beam headlamp vertical aim angle was determined both with the vehicle was empty (no load) and loaded with weight to simulate a person in the driver seat (driver load). Headlamp aim was then judged based on the limits specified in SAE J599 as well as the manufacturers’ specifications for both test conditions. |
DOT HS 813 481 |
Development of Discrete Size Measurement Methodologies for Motorcycle HelmetsFMVSS No. 218 defines the discrete size of a motorcycle helmet and requires it on the label; however, it does not specify how to measure the size. In addition, there is no standard procedure for determining the helmet positioning index (HPI) used to align the helmet on the headform for measurements and testing. This research developed procedures to determine HPI and to measure discrete size of motorcycle helmets. Four methods for measuring discrete size and one method for determining the HPI were developed and evaluated. |
DOT HS 813 305 |
An Approach for the Selection and Description of Elements Used to Define Driving Scenarios – Part IIThis research report studied the elements and properties used to describe driving scenarios and builds on two previous research reports in which five scenarios were chosen from human driving data and various proposed behavioral competencies for automated driving systems. A preliminary list of elements and properties used to uniquely describe the five driving scenarios was developed to help facilitate reproducible, repeatable, and traceable representation. The selected elements and their properties were focused on the ground truth scenario information. In this report six scenarios were selected from available driving databases, crash databases, and the behavioral competencies not covered in the previous research. These six scenarios were analyzed to consider expansion of the preliminary list of elements and properties that can be used to facilitate more complete descriptions of driving scenarios. |
DOT HS 813 367 |
Vehicle Classification and Equipment Type Crash Data and Market SurveyNHTSA evaluates market trends and crash data to understand how FMVSS affect motor vehicle safety. This report describes a crash data and market survey of five vehicle and equipment categories that all have unique relevance in the FMVSS: (1) large passenger vehicles, trucks, and SUVs excluded from FMVSS No. 208 air bag requirements (Class 2B); (2) limousines over 10,000 lbs. GVWR; (3) “entertainer” buses and motor homes over 26,000 lbs. GVWR; (4) medium buses that carry 11 or more occupants; and (5) motorcycle helmets. A market survey was conducted for all five vehicle and equipment categories, while the crash data analysis was conducted only for Class 2B large passenger vehicles of GVWR 8,500 lbs. to 10,000 lbs. |
DOT HS 813 156 |
Status of NHTSA’s Roof Ejection Mitigation ResearchNHTSA is continuing its exploration of roof ejection mitigation that began following NHTSA’s issuance of Federal Motor Vehicle Safety Standard (FMVSS) No. 226, “Ejection Mitigation,” which sets requirements to reduce the likelihood of complete and partial ejections of occupants through side windows during rollovers or side impact crashes. Three more platforms were identified for testing at NHTSA’s Vehicle Research and Test Center. The Lincoln MKZ, which is a large outer slider with production and countermeasure Protec II panels, and prototype roof air curtain designs from Hyundai-Mobis and Autoliv. |
DOT HS 813 416 |
A Modeling Study on Child Occupant Safety With Unconventional Seating ConfigurationsThis study uses computer models to study how unconventional seating positions and orientations such as those conceptualized to be offered in vehicles with Automated Driving Systems may affect occupant response metrics of children restrained by child restraint systems (CRS) equipped with internal harnesses (CRS harness-restrained) or the vehicle lap-shoulder belt, with and without belt-positioning boosters. A total of 550 simulations were conducted with the CRABI 12MO in rear-facing CRS, the H33YO in both rear-facing and forward-facing CRS, the H36YO in a backless booster, and the H310YO with and without a booster across a range of conventional and unconventional seating locations and orientations under five impact directions and various CRS installation methods. This is the first study using different child ATDs and CRSs to investigate child occupant responses in a wide range of impact directions and seating orientations. |
DOT HS 813 434 |
Head-Up Displays and Distraction PotentialHead-up displays (HUDs) present opportunities and challenges for mitigating driver distraction. HUDs may improve safety by reducing the time required to view driving-related information relative to a traditional head-down displays (HDDs). However, because the HUD is in the driver’s field of view, drivers may fixate on it or fail to perceive events in the environment. This study investigated driver use of a HUD, an HDD, and an aftermarket display by measuring visual behavior during public road driving. |
DOT HS 813 293 |