Skip to main content

Vehicle Safety

Resources

The Office of Vehicle Safety Research and supports U.S. DOT’s and NHTSA’s safety goals by conducting research and safety testing of motor vehicles and motor vehicle equipment. 

NHTSA’s recently published vehicle safety reports are listed chronologically below.



139 Results
Title
 

Functional Safety Assessment of a Generic Accelerator Control System With Electronic Throttle Control in Gasoline-Fueled Vehicles

This report describes research to derive safety requirements related to the failures and countermeasures of the accelerator control system with electronic faults such as electronic throttle control (ACS/ETC) signals, following an industry process standard specifically in vehicles with diesel engines. This study follows the Concept Phase process in ISO)26262 and applies hazard and operability study, functional FMEA, and STPA methods. It identifies five safety goals and 204 ACS/ETC system safety requirements as well as potential opportunities to improve the risk assessment approach in ISO 26262.

An Assessment Method for Automotive Intrusion Detection System Performance

In response to the increased attack surfaces on modern vehicles due to expanded use of software and the introduction of wireless interfaces, a new market has emerged for intrusion detection systems (IDSs), which can detect some types of attacks and are under development by several companies. NHTSA requested development and demonstration of a method for assessing the in-vehicle performance of anomaly-based IDSs for vehicle data buses, specifically buses using controller area network protocols. IDSs may (1) protect vehicles from direct malicious manipulation of the data bus traffic, or (2) detect symptoms of unfriendly modification of firmware on one of the dozens of electronic control units (ECUs) on a modern vehicle’s network. The methodology used provides a means to assess the performance of automotive IDS products, to provide quantitative and qualitative analysis of performance, and to offer insights on potential IDS options.

Relative Frequency of U.S. Pedestrian Injuries Associated With Risk Measured in Component-Level Pedestrian Tests

Injury data about U.S. pedestrians was analyzed to estimate frequencies of injuries associated with impacts to vehicle components that could be tested by available component-level pedestrian test equipment. The relative frequencies of injuries that could be affected by pedestrian headform tests, upper legform tests, and lower legform tests were compared. These injuries could be reduced or mitigated if vehicle performance were improved. To determine pedestrian body regions and impacting vehicle components the tests used the same test tools and procedures defined for European New Car Assessment Programme (Euro NCAP) pedestrian testing. Vehicle components in test procedures used test zones defined for Euro NCAP pedestrian test procedures. Therefore, the real-world injuries associated upper legform component tests in this study include all cases with hip, pelvis, or thigh injuries from impact to the hood leading edge or grille. Data on the frequency of injuries by body region was drawn from pedestrian cases in the National Trauma Data Bank (NTDB) from 2007 to 2014 and the Pedestrian Crash Data Study from 1994 to 1998. Injury severity was categorized using the Abbreviated Injury Score and the Maximum Abbreviated Injury Score (MAIS) for each pedestrian.

Aftermarket Safety Device Driver Vehicle Interface Guidance Development

Connected vehicle (CV) technology lets vehicles position and movement to vehicles, enabling safety warnings for in some collision scenarios, whether OEM or aftermarket safety devices (ASDs). ASDs raise questions about interface considerations and vehicle onboard data access. This study addressed these questions. An information search and review found little consensus regarding what ASDs are likely to look like when they become available. An analytical task identified the data elements that might not be available to an ASD without a data connection to the vehicle itself. Results showed that two required CV elements (transmission state and steering wheel angle) are not inherently available to an ASD without a vehicle data connection. Following analytical review, researchers developed three mock prototype ASD systems, (1) Level 1, auditory only, (2) Level 2, auditory warning with dashboard visual display showing threat direction; and (3) Level 3, vehicle-integrated system with light bars on perimeter of vehicle that flash to indicate threat direction. A driving simulator  that focused on driver response to collision warnings found that participants generally responded quickly to ASD warnings and Level 3 interfaces often led to faster response. 

Functional Safety Assessment Of a Generic Accelerator Control System With Electronic Throttle Control in Fuel Cell Hybrid Electric Vehicles

This report describes and validates a holistic collection of test procedures assessing safety hazards to electric vehicles while being charged.  If not properly protected and controlled, vehicle charging using AC or DC can introduce hazards ranging from high-voltage exposure to vehicle or battery damage. The tests in this report have been independently developed based on commonly accepted single-point failure modes and hazards identified in 24 separate FMEAs related to electric vehicle applications of Li-ion battery technology and the system’s ability to effectively detect and mitigate safety-relevant occurrences during charging.

Safety Management of Automotive Rechargeable Energy Storage Systems: The Application of Functional Safety Principles to Generic Rechargeable Energy Storage Systems

This report documents two NHTSA approaches evaluating hazards associated with automotive rechargeable energy storage systems (RESS).  It consists of four parts: (1) evaluating hazards with functional safety and associated security levels of automotive RESS controls; (2) analyzing and assessing safety-related RESS control diagnostics, event data loggers, and prognostics; (3) identifying safety-critical information and communicating it to operators, first and second responders, and service technicians; and (4) addressing safety-related instructions and training needs.

Examination of a Prototype Camera Monitor System For Light Vehicle Outside Mirror Replacement

This report describes examination of a prototype side camera monitor system (CMS) used in lieu of outside rearview mirrors on light vehicles to learn about the technology and related issues as NHTSA considers whether to revise FMVSS No. 111 to permit such technologies as alternative compliance.  A 2016 Audi A4 with a prototype CMS was used for a 4-week test in daylight and dark, stationary and dynamic, and dry and rainy conditions using portions of existing FMVSS No. 111 “Rear Visibility” and existing and pending European standards for camera monitor systems. This work provided information about this technology to inform NHTSA how to respond to petitions from the Alliance of Automobile Manufacturers, Tesla, and Daimler Trucks North America, requesting that FMVSS No. 111 be revised to permit technologies other than mirrors.

Cybersecurity Research Considerations for Heavy Vehicles

The intent of this research is to investigate cybersecurity aspects of medium-duty/heavy-duty (MD/HD) trucks (classes 1 to 8) and compare those aspects to passenger vehicles. Information collected had a significant bias towards HD vehicles (class 7/8), as opposed to MD vehicles.

Field Study of Light-Vehicle Crash Avoidance Systems: Automatic Emergency Braking and Dynamic Brake Support

The telematics-based, data collection from General Motors’ OnStar system has strengths for evaluating safety systems, cost, sample size, long-term effects, data efficiency, and rapid-turnaround of large-scale results for examining rare events such as automatic braking, near-crash or crash events. This type of telematics-based data collection is also helps understand impacts of safety systems that are rapidly emerging globally. This field study report uses high-priority data addressing driver assistance actions and corresponding driving behavior associated with production crash avoidance-equipped passenger vehicles and focuses on automatic emergency braking (AEB) and dynamic brake support (DBS) systems offered by GM as “Front Automatic Braking” (FAB) and “Intelligent Brake Assist” (IBA), respectively. These systems are jointly referred to as the Collision Preparation System (CPS). Data was captured on 1,021 production vehicles (all MY 2015 Cadillacs) equipped with FAB and IBA from consenting vehicle owners over a 1-year period; the vehicles involved operated in 46 of 50 States.

Functional Safety Assessment of a Generic Accelerator Control System With Electronic Throttle Control in Diesel-Fueled Vehicles

This report describes research to derive safety requirements related to the failures and countermeasures of the accelerator control system with electronic faults such as electronic throttle control (ACS/ETC) signals, following an industry process standard specifically in vehicles with diesel engines. This study follows the Concept Phase process in ISO)26262 and applies hazard and operability study, functional FMEA, and STPA methods. It identifies five safety goals and 204 ACS/ETC system safety requirements as well as potential opportunities to improve the risk assessment approach in ISO 26262.