NHTSA Interpretation File Search
Overview
NHTSA's Chief Counsel interprets the statutes that the agency administers and the standards and regulations that it issues. Members of the public may submit requests for interpretation, and the Chief Counsel will respond with a letter of interpretation. These interpretation letters look at the particular facts presented in the question and explain the agency’s opinion on how the law applies given those facts. These letters of interpretation are guidance documents. They do not have the force and effect of law and are not meant to bind the public in any way. They are intended only to provide information to the public regarding existing requirements under the law or agency policies.
Understanding NHTSA’s Online Interpretation Files
NHTSA makes its letters of interpretation available to the public on this webpage.
An interpretation letter represents the opinion of the Chief Counsel based on the facts of individual cases at the time the letter was written. While these letters may be helpful in determining how the agency might answer a question that another person has if that question is similar to a previously considered question, do not assume that a prior interpretation will necessarily apply to your situation.
- Your facts may be sufficiently different from those presented in prior interpretations, such that the agency's answer to you might be different from the answer in the prior interpretation letter;
- Your situation may be completely new to the agency and not addressed in an existing interpretation letter;
- The agency's safety standards or regulations may have changed since the prior interpretation letter was written so that the agency's prior interpretation no longer applies; or
- Some combination of the above, or other, factors.
Searching NHTSA’s Online Interpretation Files
Before beginning a search, it’s important to understand how this online search works. Below we provide some examples of searches you can run. In some cases, the search results may include words similar to what you searched because it utilizes a fuzzy search algorithm.
Single word search
Example: car
Result: Any document containing that word.
Multiple word search
Example: car seat requirements
Result: Any document containing any of these words.
Connector word search
Example: car AND seat AND requirements
Result: Any document containing all of these words.
Note: Search operators such as AND or OR must be in all capital letters.
Phrase in double quotes
Example: "headlamp function"
Result: Any document with that phrase.
Conjunctive search
Example: functionally AND minima
Result: Any document with both of those words.
Wildcard
Example: headl*
Result: Any document with a word beginning with those letters (e.g., headlamp, headlight, headlamps).
Example: no*compl*
Result: Any document beginning with the letters “no” followed by the letters “compl” (e.g., noncompliance, non-complying).
Not
Example: headlamp NOT crash
Result: Any document containing the word “headlamp” and not the word “crash.”
Complex searches
You can combine search operators to write more targeted searches.
Note: The database does not currently support phrase searches with wildcards (e.g., “make* inoperative”).
Example: Headl* AND (supplement* OR auxiliary OR impair*)
Result: Any document containing words that are variants of “headlamp” (headlamp, headlights, etc.) and also containing a variant of “supplement” (supplement, supplemental, etc.) or “impair” (impair, impairment, etc.) or the word “auxiliary.”
Search Tool
NHTSA's Interpretation Files Search
| Interpretations | Date |
|---|---|
ID: 2705yOpen Mr. S. Kadoya Dear Mr. Kadoya: This responds to your request for interpretations of several safety standards and the Bumper Standard, in connection with a planned "active" suspension system. I regret the delay in responding to your letter. Your questions are responded to below. By way of background information, the National Highway Traffic Safety Administration (NHTSA) does not provide approvals of motor vehicles or motor vehicle equipment. Under the statutes administered by this agency, it is the responsibility of the manufacturer to ensure that its vehicles and equipment comply with applicable standards. The following represents our opinion based on the facts provided in your letter. According to your letter, Mazda is concerned about the protocol of compliance testing of vehicles equipped with an active suspension system. This concern arises because many standards do not specify a suspension height that is to be used during compliance testing. As you noted, this has not been a concern for conventional suspension systems, since they do not provide for variable height. Mazda's planned active suspension system would be actuated by hydraulic fluid or compressed air, with control pressure being developed by a hydraulic pump or air compressor driven off the engine. Consequently, the active suspension system would be operational only when the vehicle's engine is operating. At vehicle speeds in excess of "z" mph, where z is greater than 35 mph, the suspension height would be lowered by "x" mm from the nominal or design position for vehicle operation. If the engine/vehicle were not used for several consecutive days, pressure in the control system would fall such that the supension height may be lowered from the nominal or design position for vehicle operation by "y" mm, where y is greater than x. The suspension height would return to the nominal or design position for vehicle operation after such an extended period of inoperation almost immediately after starting the vehicle's engine. Before discussing your specific questions, I would like to discuss more generally the issue of how compliance is determined in situations where a standard does not specify a particular test condition. In issuing Federal motor vehicle safety standards, NHTSA attempts to specify all relevant test conditions. The agency does this as part of ensuring that its standards are objective and practicable. As a practical matter, however, it is not possible to specify every conceivable test condition. This is particularly true for ones which may only be relevant to as-yet-undeveloped technologies. In cases where a standard does not specify a particular test condition, we believe there are several relevant factors to consider in interpreting the standard. First, in the absence of specification of a particular test condition, we believe there is a presumption that the requirements need to be met regardless of such test condition, since the standard does not include any language which specifically limits applicability of its requirements to such test condition. For example, where a standard does not specify suspension height, its requirements may need to be met at all heights to which the suspension can be adjusted. Before reaching such a conclusion, however, we also consider the language of the standard as a whole and its purposes. Even if a standard is silent as to a particular test condition, the language of the standard or its purposes may indicate limitations on such test condition. Finally, in situations where a limitation on a particular test condition may appear to be appropriate, we also must consider whether the limitation is sufficiently clear, both with respect to justification and specificity, to be appropriate for interpretation. For example, in a situation where it may appear to be reasonable to limit a particular test condition but it is not obvious what particular limitation should be adopted, it would be inappropriate to select a particular limitation by interpretation. Instead, such a decision should be reached in rulemaking. I will now address the specific questions asked in your letter. Standard No. l08, Lamps, Reflective Devices, and Associated Equipment In asking about Standard No. l08, you stated the following: NHTSA has previously issued an interpretation of the requirements of FMVSS No. l08; at the request of a confidential applicant and dated February l2, l985, with respect to active suspension equipped vehicles. This interpretation stated that the requirements of FMVSS l08 must be meet (sic),"...at any time in which..." lamps, reflective devices, and associated equipment are to be,"...operated for its intended purpose." Consequently, headlamps, tailamps, stoplamps, the license plate lamp, and side marker lamps, must comply with the location requirements of FMVSS No. l08 whenever the vehicle's ignition is in the "on" postiion. Conversely, reflex reflectors, and turn signal lamps that also function as hazard warning signal flashers must comply with the location requirements when the vehicle's ignition is in either the "on" or "off" position. However, it is Mazda's interpretation that hazard warning flashers are not intended to be operational for a period of days, but rather for a period of hours, at maximum, only. You then asked two questions, (l) whether Mazda's understanding of the subject NHTSA interpretation is accurate, and (2) whether Mazda's interpretation of the maximum intended operating duration of hazard warning signal flashers is correct. I note that the February l985 interpretation was written in the context of a vehicle with a variable height system actuated by hydraulic fluid. In that particular system, the hydraulic pressure relaxed over a period of about three hours after the ignition was turned off, with the result that the vehicle assumed a lower height than it would have during driving. NHTSA stated the following: We believe that the minimum height requirement should be met for any lamp at any time in which it is operated for its intended purpose. Since vehicles at rest do not require use of headlamps, the minimum height requirement would be measured at the point after the ignition is on and when the car begins to travel (your letter implies that the time lag between turning on the ignition and restoration of a complying mounting height is a matter of seconds). On the other hand, the hazard warning signal lamps are frequently operated when the vehicle is stopped, and therefore the minimum mounting height of turn signal lamps, through which they operate, must be met with the ignition off, even if the system requires three hours to deplete itself and lower the vehicle to its minimum height. With respect to your question of whether Mazda's understanding of the interpretation is correct, I would like to note two points. First, while you state that "the requirements of FMVSS l08" must be met at any time in which lamps, reflective devices, and associated equipment are to be operated for their intended purpose, our interpretation was limited to standard's minimum height requirement. While we are prepared, if asked, to address other requirements, our interpretations should be understood to be limited to their specific facts and conclusions. Second, while our interpretation only addressed headlamps and hazard warning signal lamps, you applied the interpretation for headlamps to taillamps, stoplamps, the license plate lamp, and side marker lamps, and the interpretation for hazard warning signal lamps to reflex reflectors. We concur with this application, with respect to Standard No. l08's minimum height requirement. We do not agree with Mazda's suggested interpretation of the maximum intended operating duration of hazard warning signal flashers. You would apparently like us to conclude that Standard No. l08's minimum height requirement for hazard warning signal flashers does not apply after a vehicle's ignition has been turned off for a matter of days. In addressing how Standard No. l08 applies in the absence of a specification for vehicle height, our February l985 interpretation differentiates between situations where the vehicle is operating and where it is not. Looking at the purposes of the requirements in question, we believe it is obvious that the minimum height requirement for headlamps is only relevant in situations where the vehicle is operating, while the minimum height for hazard warning signal lamps is also relevant to situations where the vehicle is stopped and the ignition turned off. However, we believe that any determination that Standard No. l08's minimum height requirement for hazard warning signal flashers should not apply after a specified number of hours after the ignition has been turned off is one that would need to be addressed in rulemaking. It is therefore my opinion that the minimum mounting height of hazard warning signal lamps must be met at all heights with the ignition off, even if the system requires days to deplete itself and lower the vehicle to its minimum height. If you believe that a time limitation should be placed on this requirement, I note that you can submit a petition for rulemaking requesting such a change. Standard No. lll, Rearview Mirrors You requested an interpretation of section S5.l.l of Standard No. lll, which generally requires a passenger car's rearview mirror to "provide a field of view with an included horizontal angle measured from the projected eye point of at least 20 degrees, and sufficient angle to provide a view of level road surface extending to the horizon beginning at a point not greater than 200 feet to the rear of the vehicle...." You noted that since the specified procedures for determining the location of the driver's eye reference points are made referenced to points with the vehicle's cabin, your active suspension system would not affect these measurements. However, different vehicle heights would be relevant to whether there is a view of level road surface extending to the horizon beginning at a point not greater than 200 feet to the rear of the vehicle. You stated that, based on "intended purpose," Mazda's interpretation of Standard No. lll is that the requirements of this standard are to be met when the vehicle's ignition is in the "on" position as rearview mirrors are not intended to be used when the vehicle's engine is not operating. You then asked two questions, (l) whether Mazda's interpretation of the requirements of FMVSS No. lll with respect to the state of the vehicle's ignition switch is correct, and (2) for the purposes of compliance testing to the requirements of FMVSS No. lll, what means of maintaining the intended suspension height for a given speed and operating condition would be satisfactory to NHTSA. We agree that the field of view requirement specified in S5.l.l for rearview mirrors need not be met for vehicle heights that only occur when the engine is not on, since the requirement is only relevant in situations where the vehicle is operating. However, the requirement would need to be at all vehicle heights that occur during vehicle operation, under the loading conditions specified in S5.l.l. With respect to the issue of how suspension height should be maintained for purposes of compliance testing, you note early in your letter that, for reasons of practicality and safety, a vehicle's engine is not actually operational during compliance testing. However, since the active suspension system derives its power from the vehicle's engine, the system's ability to maintain and regulate suspension height is only possible during engine operation. You therefore indicated that Mazda is seeking guidelines (for several standards) by which Mazda may be able to establish a means to maintain the intended suspension height for compliance testing purposes in the absence of engine operation. We are not able, in an interpretation, to specify a particular means for maintaining suspension height for compliance testing in the absence of engine operation. However, the basic principle that should be followed in selecting a means for maintaining suspension height is that it should not result in different test results than would occur if testing could be conducted with suspension height being maintained by engine operation, i.e., what would happen in the real world. This should be relatively straightforward for section S5.l.l of Standard No. lll, since the test is static. For a crash test, it is important that a vehicle not be altered in any way that would change the vehicle's crash performance relevant to the aspect of performance being tested. Standard No. 204, Steering Control Rearward Displacement In asking about Standard No. 204, you stated the following: Section S4 of this standard specifies the compliance parameter for this standard. Section S5 specifies the testing conditions to determine compliance with this standard. Section S5.l specifies that the vehicle be loaded to its unloaded vehicle weight. Section S5.5 specifies that the vehicles fuel tank be filled with Stoddard solvent to any capacity between 90 and 95 percent of the total capacity of the tank. Mazda's interpretation of the requirements of this standard is that they are to be met when the vehicle's ignition switch is in the "on" position only. Furthermore, Mazda interprets the vehicles suspension height pursuant to S5.l and S5.5 to be the intended suspension height for the vehicle given the conditions of S4, i.e., 30 mph vehicle speed and steered wheels are positioned straight ahead. You then asked whether Mazda's interpretation of the requirements of FMVSS No. 204 are correct. As discussed below, we agree that Standard No. 204's requirements need to be met only at the suspension height that occurs at a 30 mph vehicle speed and with steered wheels positioned straight ahead. Standard No. 204 specifies requirements limiting the rearward displacement of the steering control into the passenger compartment to reduce the likelihood of chest, neck, or head injury. These requirements must be met in a 30 mile per hour perpendicular impact into a fixed collision barrier. While the standard specifies a number of test conditions, it does not specify suspension height. Looking at the Standard No. 204 as a whole, we believe it is clear that NHTSA explicitly decided to limit the standard's evaluation of steering control rearward displacement to how vehicles perform in 30 mph perpendicular impacts, even though the requirements have relevance at lower and higher speeds. Therefore, we agree that the standard's requirements need to be met only at suspension heights that occur at a 30 mph vehicle speed and with steered wheels positioned straight ahead. With respect to Mazda's question concerning means of maintaining intended suspension height for compliance testing, please see our discussion provided with respect to Standard No. lll. Standard No. 208, Occupant Crash Protection In asking about Standard No. 208, you stated the following: Section S8.l.l(d), "Vehicle test attitude," specifies the procedure for determining the vehicle test attitude that is to be used for testing. Specifically, this section requires that the vehicle's pretest attitude, "...shall be equal to either the as delivered or fully loaded attitude or between the as delivered and fully loaded attitude." The as delivered attitude is defined by S8.l.l(d) as being, "...the distance between a level surface and a standard reference point on the test vehicle's body, directly above each wheel opening, when the vehicle is in its "as delivered" condition. The "as delivered" condition is the vehicle as received at the test site..." Because it is highly likely that the test vehicle will not have been operated for a period of days prior to arriving at the test site, the suspension height may have fallen by "y" mm. The fully loaded attitude is defined as the attitude of the vehicle when loaded in accordance with S8.l.l(a) or (b) and a determination of the height of the suspension at the fully loaded condition is made from the same level surface, using the same standard reference points, as were used to determine the "as delivered" condition. The definition of the "as delivered" condition is quite clear. However, Mazda interprets the "fully loaded condition" of the vehicle to be the condition when the vehicle's ignition is "on." In this instance it is likely that the height of the standard reference points on the vehicles body when in the "fully loaded condition" relative to the level surface will be greater than for the "as delivered" condition. Conversely, conventional vehicle suspension systems will likely have an "as delivered" height greater than the "full loaded" height. However, this fact is of no importance as S8.l.l(d) states that the pretest vehicle attitude may be, "...between the as delivered and the fully loaded attitude." With respect to the injury criteria specified by section S6 of this standard, Mazda's interpretation is that these criteria must be met with the vehicle's ignition in the "on" position only. You then asked three questions, (l) whether Mazda's interpretation of the definition of the "fully loaded condition" is correct with respect to the condition of the ignition switch, (2) whether Mazda's interpretation of the irrelevance of the relative relationship between the "as delivered" and "fully loaded" conditions is correct, and (3) whether Mazda's interpretation of the meaning of "between the as delivered and the fully loaded attitude" is correct. In addressing your questions, I will begin by noting that Standard No. 208 specifies occupant protection requirements which must be met in specified crash tests at any impact speed up to and including 30 mph. While the standard specifies a number of test conditions, it does not specify suspension height. However, the standard does specify vehicle attitude, which is closely related to suspension height. In addressing how Standard No. 208 applies in the absence of a specification for vehicle height, the relationship between the standard's attitude specification and vehicle height must be considered. Section S8.l.l(d) specifies the attitude of the vehicle during testing, i.e., the angle of the vehicle relative to the ground. This test condition ensures that the vehicle is not overly tilted toward the front or back, or to one side. The section accomplishes this purpose by specifying that, during a compliance test, the height of the vehicle at each wheel is within a specified range. This range, which may be somewhat different for each wheel, is determined by looking at the vehicle in the "as delivered" condition and the "fully loaded" condition. A vehicle must meet the requirements of Standard No. 208 when its height at each wheel is anywhere within the specified ranges. On first glance, one might read section S8.l.l(d) to create a height requirement, since ranges of height are determined under that section (at each wheel). This would be incorrect, except in a very narrow sense, since Standard No. 208 does not specify, for vehicles with variable height suspension systems, what suspension height should be used in the two conditions ("as delivered" and "fully loaded") where the specified ranges of height are determined under section S8.l.l(d). Looking at the Standard No. 208 as a whole, we believe it is clear that NHTSA explicitly decided to limit the standard's evaluation of occupant crash protection in frontal impacts to how vehicles perform in impacts of 30 mph or less, even though the requirements also have relevance at higher speeds. It is our interpretation that the frontal crash test requirements need to be met at all suspension heights that can occur at speeds of 30 mph or less, with the vehicle operational. It is also our interpretation that the crash test requirements need to be met only at suspension heights that can occur at the speed used in the crash test. A remaining issue is how section S8.l.l(d) applies for vehicles with variable height suspension systems. As discussed below, vehicle attitude should be determined under this section using the actual suspension setting (or equivalent, if the setting is automatic) to be used in a crash test. For purposes of illustration, I will assume a vehicle with two very different suspension height settings. It would not be appropriate to conclude that the ranges of height determined under section S8.l.l(d) should simultaneously cover both suspension heights. Such ranges would be very large, and would not ensure that the vehicle is not overly tilted toward the front or back, or to one side. Moreover, such ranges would not be relevant to the real world, with respect to vehicle attitude. Traditional vehicles can be viewed as having a single suspension "setting." This single suspension condition is used in determining vehicle attitude under section S5.8.8.l. The ranges of height result from the differences in loading under the "as delivered" and "fully loaded" conditions. A single suspension "setting" (or equivalent, if the setting is automatic) should similarly be used in determining vehicle attitude for vehicles with variable height suspension systems. The "setting" should be the one to be used in a crash test. With respect to Mazda's question concerning means of maintaining intended suspension height for compliance testing, please see our discussion provided with respect to Standard No. lll. You also asked for an interpretation of section S8.2.7 of Standard No. 208. That section specifies additional conditions to be used for lateral moving barrier crash testing. Section S8.2.7(a) states that the vehicle is at rest in its "normal attitude." You stated that Mazda interprets the meaning of "normal attitude" to be that vehicle attitude which is intended when the vehicle's ignition is in the "on" condition, with the vehicle loaded pursuant to S8.l.l(a) or (b), and while the vehicle is at rest. Standard No. 208 provides manufacturers the option of either equipping their vehicles with safety belts or meeting certain alternative requirements, including lateral moving barrier crash test requirements. These requirements are relevant at all vehicle heights that can occur during vehicle operation, regardless of speed. Moreover, NHTSA has not decided to limit the standard's evaluation of this aspect of safety performance to how vehicles perform at certain limited speeds. It is our interpretation that the lateral moving barrier crash test requirements, if applicable, must be met at all suspension heights that can occur with the vehicle operational. "Normal attitude" is the attitude determined under section S8.l.l(d). As discussed above, attitude for vehicles equipped with variable height suspension systems is determined under section S8.l.l(d) using the actual suspension setting (or equivalent, if the setting is automatic) to be used in a crash test. Standards No. 2l2, Windshield Mounting; No. 2l9, Windshield Zone Intrusion; No. 30l, Fuel System Integrity In asking about Standards No. 2l2, No. 2l9, and No. 30l, you noted that NHTSA has previously issued an interpretation to Mazda about how these standards apply to adjustable height suspension systems. In a letter dated August l0, l982, the agency addressed a vehicle equipped with a suspension system having two height positions, one for normal highway driving and another for off-road driving, which could be selected by the driver. NHTSA stated the following: [Safety Standards No. 2l2, No. 2l9, and No. 30l] do not specify a height adjustment because almost all vehicles have a single, set adjustment. . . . After careful consideration, it is the agency's position that such a vehicle capable of variable height adjustment would have to comply with the vehicle adjusted to any position that is possible. This is true because the vehicle could be driven on the highway, for example, even if it were adjusted to the off-road position. Consequently, it is important that the vehicle comply with the standards in all positions. You noted that while suspension height could be adjusted by the driver for the system discussed in the agency's previous interpretation, the active suspension system you are currently considering would use an on-board electronic controller to select suspension height, and suspension height would not be adjustable by the driver. Consequently, according to your letter, only one unique set of suspension height parameters is possible for a given vehicle speed and loading condition as is the case with conventional suspension systems. You stated that because it is possible to determine exactly what the intended suspension height should be for a given situation, it is Mazda's opinion that the test vehicle should be tested at the intended suspension height given the specified speed and loading conditions. You also stated that, using an "intended purpose" argument, Mazda concludes that the requirements of the three standards are to be met only when the vehicle's ignition is "on." You then asked whether these suggested interpretations are correct. Standard No. 2l2 specifies windshield retention requirements that must be met in a specified frontal crash test at any impact speed up to and including 30 mph. Similarly, Standard No. 2l9 specifies windshield zone intrusion requirements that must be met in a specified frontal crash test at any impact speed up to and including 30 mph. Standard No. 30l specifies fuel system integrity requirements for several specified crash tests. These include a frontal crash test similar to those in Standards No. 2l2 and No. 2l9. Requirements for this test must be met at any impact speed up to and including 30 mph. Other tests include a rear moving barrier crash test, a lateral moving barrier crash test, and a static rollover test. We agree that the requirements of Standards No. 2l2, No. 2l9, and No. 30l need not be met for vehicle heights that only occur when the engine is not on, since the requirements are only relevant in situations where the vehicle is operating. Looking at the three standards as a whole, we believe it is clear that, for the frontal tests specified by the three standards, NHTSA decided to limit the standards' evaluation of safety performance to how vehicles perform in impacts of 30 mph or less, even though the requirements have relevance at higher speeds. It is our interpretation that the frontal crash test requirements specified by these standards need to be met at all suspension heights that can occur at speeds of 30 mph or less, with the vehicle operational. It is also our interpretation that the crash test requirements need to be met only at suspension heights that can occur at the speed used in the crash test. We reach a different conclusion for Standard No. 30l's other crash test requirements. These requirements are relevant at all vehicle speeds and suspension heights. Moreover, NHTSA has not decided to limit the standard's evaluation of these aspects of safety performance to how vehicles perform at certain limited speeds. It is our interpretation that these crash test requirements must be met at all suspension heights that can occur with the vehicle operational. Part 58l Bumper Standard In asking about the Part 58l Bumper Standard, you noted that NHTSA has previously issued several interpretations of how the standard applies to vehicles with adjustable height suspension systems. In a letter to Subaru dated May 6, l986, NHTSA stated the following: Given the absence of a specific test condition concerning suspension height, it is our interpretation that a vehicle must be capable of meeting the standard's damage criteria at any height position to which the suspension can be adjusted. There is no language in the test requirements of the standard limiting their applicability to "the manufacturer's nominal design highway adjusted height position." This interpretation is consistent with the purpose of the Bumper Standard, set forth in section 58l.2, to reduce physical damage to the front and rear ends of a passenger motor vehicle from low speed collisions. If a vehicle's suspension could be adjusted so that its bumper height resulted in bumper mismatch with other vehicles in the event of low speed collisions, the reduction in physical damage attributable to the Bumper Standard would be defeated in whole or part. In another letter, dated February l2, l985, NHTSA stated that a vehicle is "required to meet the pendulum test of Part 58l in any vehicle use scenario in which the vehicle operates, and the barrier test of Part 58l when the engine is idling." You suggested, for the barrier test, that the agency's May l986 interpretation may be inappropriate for your active suspension system, since your system provides for only one suspension height when the engine is idling. You also suggested, for the pendulum test, that these interpretations seem to be in conflict with the Bumper Standard's stated purpose to reduce physical damage to motor vehicles in low speed collisions. We assume that you are referring to the fact that your suspension system has heights that occur only at speeds greater than 35 mph. You then requested that NHTSA provide an interpretation of Part 58l with respect to your system. In addressing how Part 58l applies to vehicles equipped with an active suspension system, I will address separately the standard's barrier and pendulum tests. For the barrier test, a vehicle must meet specified damage criteria after an impact into a fixed barrier that is perpendicular to the line of travel of the vehicle, at 2.5 mph. Section 58l.6 sets forth conditions applicable to bumper testing. Under section 58l.6(c), at the onset of a barrier impact, the vehicle's engine is operating at idling speed. Looking at the Bumper Standard as a whole, we believe it is clear that NHTSA decided to limit the barrier test's evaluation of bumper performance to how vehicles perform in 2.5 mph frontal impacts, even though the requirements have relevance at lower and higher speeds and when the vehicle is nonoperational. It is our interpretation that the barrier test requirements specified by this standard need to be met at all suspension heights that can occur at 2.5 mph. We reach a different conclusion for the pendulum test, which serves the purpose of creating a bumper height requirement. This requirement is relevant at all vehicle speeds and suspension heights, and when the vehicle is nonoperational. I note that while Mazda is correct that the Bumper Standard's stated purpose is to reduce physical damage to motor vehicles in low speed collisions, NHTSA has justified the bumper height requirement on safety concerns related to "higher speed collisions." In proposing Standard No. 2l5, the predecessor of Part 58l, the agency stated: . . . in higher speed collisions the tendency of a bumper to override another or to ride under or over a guardrail creates hazards for vehicle occupants. Vehicles with interlocking bumpers block traffic and expose their occupants to considerable danger, particularly if they attempt to get out to unlock bumpers. By overriding or underriding a guardrail, a bumper may strike a supporting post, or similar fixed object, with serious consequences for the vehicle and its occupants. 35 FR l7999, November 24, l970. The relevance of the bumper height requirement to nonoperational situations is also clear, e.g., to help protect parked cars. Moreover, NHTSA has not decided to limit the bumper height requirement to how vehicles perform at certain limited speeds. It is our interpretation that the pendulum test requirements must be met at all suspension heights that can occur, regardless of vehicle speed or whether the ignition is turned on. This interpretation is consistent with an October l8, l978 letter to Nissan, in which NHTSA addressed how the pendulum test applies to vehicles equipped with height control systems, including automatic height control systems. Among other things, the agency stated the following: . . . There is no language in the pendulum test requirements of the standard which would limit their applicability to only the ignition-on or ignition-off situation or to the recommended driving position for normal roadways. The vehicle must be capable of meeting the pendulum test requirements at all stable bumper heights possible at unloaded vehicle weight. Thus, in the situations described in Question l and 2 of your letter, in which an automatic height control system is employed, the vehicle must comply with the pendulum test requirements in both the ignition-on and ignition-off positions . . . . I note that one of our past letters, a December 24, l984 letter addressed to Porsche, appears to suggest that the pendulum test must be met in any setting in which the system operates "when the engine is idling." This might be read to suggest that the pendulum test need not be met when the vehicle is nonoperational. However, this interpretation cited section 58l.6(c) in concluding that the engine is idling during Part 58l testing. Section 58l.6(c) applies only to the barrier test and not the pendulum test. We therefore consider this interpretation to be incorrect to the extent that it is inconsistent with the analysis presented above. Sincerely, Paul Jackson Rice Chief Counsel ref:l08#lll#204#208#2l2#2l9#30l#58l d:l0/2/90 |
1989 |
ID: nht81-1.10OpenDATE: 02/05/81 FROM: AUTHOR UNAVAILABLE; F. Berndt; NHTSA TO: Richard A. Rechlicz TITLE: FMVSS INTERPRETATION TEXT: This responds to your December 18, 1980, letter asking several questions about the application of Standard No. 217, Bus Window Retention and Release, to school buses. First, you refer to paragraphs (a) and (b) of S5.2.3.1 and question which paragraph establishes the minimum safety level. Since paragraph (a) was first proposed and subsequently modified by the addition of paragraph (b), you believe that paragraph (a) defines the minimum level of safety while paragraph (b) meets or exceeds that level of safety. This reading of the standard is not completely accurate. Paragraph (a) of that section was the first part of the section to be proposed. Before the rule became effective, however, the proposal was amended to include paragraph (b). Accordingly, both paragraphs must be read together as defining the minimum mandatory safety performance requirement. Second, you ask for our opinion of the preemption clause in the National Traffic and Motor Vehicle Safety Act (15 U.S.C. 1392(d)). You state that your interpretation is that no State or local government may adopt a safety standard applicable to the same aspect of performance as a Federal standard unless it is identical to the Federal standard. An exception exists for standards applicable to vehicles purchased for the State's or the local government's own use. This is an accurate reading of the preemption clause, however, a major area of contention frequently arises around what constitutes the same aspect of performance as a Federal standard. Third, you ask whether the Federal government, through Standard No. 217, has preempted States from regulating unobstructed openings for purposes of emergency exists. As you are aware, the standard states that the emergency exit opening must be of a certain size. Further, the standard specifies the location of one of the seats at the forward-most side of the emergency exit. These are the agency's only requirements relating to the unobstructed emergency exit opening. With respect to whether a State could regulate further in this area, it would depend upon the type of regulation the State adopted. For example, a regulation that governed the size of the opening or the location of the forwardmost seat would probably be preempted. However, a regulation that required an aisle leading to the side emergency door would not likely be preempted, since the Federal government does not regulate aisles in buses. Your fourth question asks us to comment on whether a Wisconsin statute requires aisles in school buses. The agency does not issue interpretations of State statutes. You should contact appropriate State officials for this information. Finally, you recite a Wisconsin definition of emergency door zone which states that it is "the area inside the vehicle required by FMVSS 217 to be unobstructed at the emergency exit . . . " You then ask whether there are any such zones on buses constructed with side emergency exits. The agency, as stated above, requires an unobstructed opening at each exit (S5.2.3.1). If Wisconsin defines this as a zone, then such a zone exists in buses for purposes of the Wisconsin statute. SINCERELY, RICHARD A. RECHLICZ ATTORNEY AND COUNSELOR December 18, 1980 United States Department of Transportation National Highway Traffic Safety Administration Attn: Frank Berndt, Chief Counsel RE: Standard 217, Bus Window Retention and Release File No. 80-82 Dear Mr. Berndt: Please be advised that the undersigned has been retained by and represents a corporation engaged in the manufacture of school buses throughout the United States, for the purpose of investigation certain issues that relate to standard 217, Bus Window Retention and Release and the Wisconsin Administrative Code Chapter MVD 17 entitled Transporation of School Children. For your information, I have enclosed a copy of the Wisconsin Administrative Code MVD 17. The purpose of this correspondence is to request a written legal opinion from your offices on the issues raised in this correspondence as they relate to standard 217 and MVD 17. First, as I understand the legislative history of standard 217, S5.2.3.1 was first issued with only subsection (a). Later, as a response to and after opposition was voiced by certain west coast bus manufacturers using the "California window" due to rear mounted engines, NHTSA promulgated subsection (b). Thus, the present standard allows the manufacturer to choose either subsection (a) or subsection (b). Is it correct that subsection (a) established the minimum degree of safety and that subsection (b) either meets or exceeds that minimum standard? Second, please advise as to the NHTSA position on the supremacy clause, 15USC section 1392(b). It was my belief that with respect to the directive of Congress to the NHTSA to address itself to the safety standards itemized in 15 USC 1395(i), where the NHTSA issued a safety standard thereon, the State could not adopt "any safety standard applicable to the same aspect of performance of said vehicle or item of equipment which is not identical to the Federal standard." (State owned and used vehicles excepted). Third, and I believe this relates to question 2, as I read Standard 217, especifically 217 S5.2.1, it is my impression that all buses with a GVWR of 10,000 pounds or more "shall meet the unobstructed openings requirements by providing side exits and at least one rear exit that conforms to S5.3 through S5.5". Has the federal government pre-empted the field as to what is unobstructed for the openings? For this example, please refer to the spec drawing enclosed: if the manufacturer meets the requirements of S5.4.2.1(b), can the State initiate a rule that the seating arrangement as shown in the drawing for the side door obstructs the opening? (Assume also that the seating arrangement meets federal specifications as to distance.) Fourth, it is my belief that nowhere in the Wisconsin Administrative Code MVD 17, is there a requirement that buses must have aisles. From your reading of that chapter alone, and I suggest that the word aisle is used only in MVD 17.13(1) and 17.25(2)(b), do you find anywhere that MVD 17 either (1) defines aisle? or (2) requires aisles in school buses? Again, I request the opinion on this aspect only from your reading of the provision, not from other outside factors. Finally, MVD 17.06(3) defines "emergency door zone" as "the area inside the vehicle required by FMVSS 217 to be unobstructed at the emergency exit. . ." From a reading of this definition alone, could you please advise as to whether there are any emergency door zones on a bus that is manufactured with exists meeting FMVSS 217 S5.2.3.1(b) ("California window" and side door exit). I understand that responses to all of these issues raised in this correspondence will require a considerable amount of time by your offices. Please realize that it is important that we have a response from your offices on each question. Accordingly, if there is any question that is not clear to you as stated, please call. Furthermore, I would request that you acknowledge receipt of this correspondence. Your prompt and immediate attention to this correspondence is appreciated as we are currently experiencing certain time restraints. I thank you in advance for your consideration and courtesies. Seasons greetings to you and your family. ENC. cc: THOMAS BUILT BUS, INC. ATTN: BRYCE HUNT; RODDY LIGON, JR.; WILLIAM G. LADEWIG, ATTY AT LAW; NOTE: THE SEAT JUST FORWARD OF THE SIDE EMERGENCY DOOR CAN NOT EXTEND BEYOND LEADING VERTICAL EDGE OF DOOR OPENING. APPLIES TO: "S" MODELS WITH SIDE EMERGENCY DOOR AND WITHOUT REAR EMERGENCY DOOR. ALL GAUGES TO CONFORM TO AMERICAN IRON A STEEL INSTITUTE (AISI) SPECIFICATIONS THOMAS BUILT BUSES, INC. HIGH POINT, N.C. TITLE SEAT LOCATION - SIDE EMERGENCY DOOR FMVSS #217 (Graphics omitted) |
|
ID: 1985-04.35OpenTYPE: INTERPRETATION-NHTSA DATE: 11/25/85 FROM: AUTHOR UNAVAILABLE; Erika Z. Jones; NHTSA TO: Mr. John L. O'Connell TITLE: FMVSS INTERPRETATION TEXT:
November 25, 1985 Mr. John L. O'Connell Public Transportation Administrator Department of Motor Vehicles State of Connecticut State Street Wethersfield, CT 06109-1896 Dear Mr. O'Connell: This is in reply to your letter of October 8, 1985, to Jeffrey Miller, former Chief Counsel of this agency. You have asked whether a new style school bus warning lamp system developed by the Whelen Engineering Company meets the requirements of Motor Vehicle Safety Standard No. 108 and referenced SAE standards, and whether such a system can be installed and used on school buses in compliance with Federal regulations. Pursuant to paragraph S4.1.4 of Standard No. 108, a school bus must be equipped with a system of red lamps, or red and amber lamps meeting SAE Standard J887 School Bus Red Signal Lamps, July 1964 (copy enclosed). The Whelen system is said to comply with SAE J887 May 1982, with the possible exception of dimensions. The requirements that the Whelen system must meet are those of the 1964 version of J887. Dimensional specifications are not included in the 1964 version, however, the minimum effective projected luminous lens area requirement of 19 square inches must be met. The test report indicates that the Whelen lamp meets the minimum photometrics of both the 1982 and 1964 versions of J887 and its dimensions, 7" x 2.75", indicate that the minimum luminous lens area requirement may also be met. However, the test report indicates that the light flashes at a rate of 55 cycles per minute. The Whelen lamp therefore does not comply with the 1964 requirement that school bus warning lamps flash at a rate of 60-120 cycles per minute (nor the 1982 SAE specifications of 1-2 H which is 60-120 cycles per minute). For this reason, the Whelen system does not meet Federal requirements and cannot be installed on school buses certified as meeting all applicable Federal motor vehicle safety standards. Sincerely, Original Signed By Erika Z. Jones Chief Counsel Enclosure |
|
ID: 1985-02.5OpenTYPE: INTERPRETATION-NHTSA DATE: 03/28/85 FROM: AUTHOR UNAVAILABLE; Jeffrey R. Miller; NHTSA TO: Mr. Robert M. Levy TITLE: FMVSS INTERPRETATION TEXT:
Mr. Robert M. Levy Manager, Design Engineering Abex Corporation Signal-Stat Division P.O. Box 438 Somerset, New Jersey 08873-3492
Dear Mr. Levy:
This is in reply to your letter of February 25, 1985, to Frank Berndt, the former Chief Counsel of this agency, asking for clarification of an interpretation of Safety Standard No. 108 that tnis agency furnished last year to Wesbar Corp.
On May 16, 1984, Wesbar asked whether the correct minimum effective luminous lens area on stop lamps and turn signal lamps was 8 square inches or 12 square inches, when intended for use on trailers whose overall width is 80 inches or greater. This office advised Wesbar on July 3, 1984, that, as specified in SAE J586c for stop.lamps and SAE J588e for turn signal lamps, the answer was 8 square inches. Your letter calls to our attention the fact that these SAE standards require each stop and turn signal lamp to have a minimum of 12 square inches in those vehicle configurations where two stop or turn signal lamps are mounted on the same side of the vehicle and are closer to each other than 22 inches.
Thank you for calling this oversight to our attention. Indeed, SAE J586c and J588e establish this exception to the general minimum requirement of 8 square inches. We are furnishing a copy of this letter to Wesbar and apologize for any confusion that the earlier letter has caused.
Sincerely,
Jeffrey R. Miller Chief Counsel
cc: Mr. C.I. Nielsen III Vice President - Marketing Wesbar Corporation Box 577 West Bend, Wisconsin 53095 |
|
ID: 18569.ztvOpenM. J. Shaw Dear Mr. or Ms. Shaw: This is in reply to your postcard of August 4, 1998, to Philip Recht, the Deputy Administrator of this agency, about the recent final rule on low-speed vehicles. Your first question is whether "the Canadian Bombardier neighborhood vehicle (electric mini-car) [is] now street legal in the USA." Your second question is whether "all states, including [Indiana, are] registering the NV for legal operation." The Federal government has the authority to issue Federal motor vehicle safety standards such as it did recently with Standard No. 500 Low-Speed Vehicles. Thus, if a motor vehicle that meets the definition of "low-speed vehicle" is manufactured and certified by its manufacturer as complying with Standard No. 500, it is legal to import and sell that vehicle in the United States. Thus, Bombardier may import its Neighborhood Vehicle (NV) from Canada by certifying compliance with Standard No. 500. We do not know, however, whether Bombardier has begun to do so. Although the sale of a certified low-speed vehicle would not violate Federal law, the requirements for registration of vehicles and conditions of their use on the public roads are matters under the authority of the states. This means that a vehicle could be "street legal," to use your term, for Federal purposes but not under state law. This brings us to your second question. We have no information whether states are or are not registering NVs or other types of low-speed vehicles. Some states, at this point, may be reviewing Standard No. 500 to determine how it affects the laws currently existing in that state. We do not know the views of Indiana on this issue. However, if you wish to ask the Indiana Department of Motor Vehicles for its opinion, you should identify the vehicle as a 4-wheeled motor vehicle, other than a truck, whose maximum speed is more than 20 miles per hour but not more than 25 miles per hour. If you have any further questions, you may phone Taylor Vinson of this office (202-366-5263). Sincerely, |
1998 |
ID: 8088Open Mr. Frank E. Timmons Dear Mr. Timmons: This responds to your letter about our November 1992 letter to the Under Secretary, Kuwait Ministry of Commerce. In that letter, NHTSA discussed Federal requirements for tires sold in the United States for passenger cars and other "motor vehicles." You wish to ensure that the Under Secretary understands that the term "motor vehicles" only refers to vehicles "manufactured primarily for use on highways." We are glad to clarify the meaning of the term "motor vehicle." "Motor vehicle" is defined in 102(3) of the National Traffic and Motor Vehicle Safety Act as "any vehicle driven or drawn by mechanical power manufactured primarily for use on the public streets, roads, and highways, except any vehicle operated exclusively on a rail or rails." (Emphasis added.) Thus, a motor vehicle is a vehicle that the manufacturer expects will use public highways as part of its intended function. This agency has issued many interpretations of what is and what is not a "motor vehicle." In general, vehicles that are equipped with tracks or are otherwise incapable of highway travel are not motor vehicles. Likewise, vehicles that are designed and sold solely for off-road use (e.g., airport runway vehicles and underground mining vehicles) are not motor vehicles even if operationally capable of highway travel. They would, however, be considered motor vehicles if the manufacturer knew that a substantial proportion of its customers actually would use them on the highway. Vehicles that use the public highways on a necessary and recurring basis are considered motor vehicles. Furthermore, even if the majority of a vehicle's use will be off-road but it will spend a substantial amount of time on-road, this agency has interpreted that to be a motor vehicle. We appreciate your interest in this matter and will provide the Under Secretary with a copy of this letter. Please contact us if we can be of further assistance. Sincerely,
John Womack Acting Chief Counsel cc: Under Secretary, Kuwait Ministry of Commerce ref:109#119#571#574 d:2/11/93 |
1993 |
ID: nht73-3.46OpenDATE: 03/12/73 FROM: AUTHOR UNAVAILABLE; Lawrence R. Schneider; NHTSA TO: Harnischfeger Corporation TITLE: FMVSR INTERPRETATION TEXT: This is in reply to your letter of January 25, 1973, to Gordon Lindquist, Regional Administrator, NHTSA, asking whether Federal standards require the installation of seat belts on certain vehicles you manufacture. According to brochures you have submitted, these vehicles are your RH 25 3-cu. yd. heavy duty hydraulic shovel, R-150-1 15-ton hydraulic crane, W-350 35-ton hydraulic swinger crane, and T-150 15-ton fully hydraulic truck crane. With reference to the first three vehicles, the RH 25, R-150-1, and W-350, the NHTSA does not consider these vehicles to be manufactured primarily for use on the public roads. Therefore, they are not "motor vehicles" subject to regulation under the National Traffic and Motor Vehicle Safety Act of 1966. We view them as construction equipment whose use of the public roads is incidental to their primary work-performing purpose. The NHTSA believes, however, based on the information you have submitted, that the T-150 hydraulic truck crane is a motor vehicle under the Safety Act, and a "truck" under the motor vehicle safety standards. We base this determination on the vehicle's speed capability, that its manufacturer classifies it as a "truck crane", and that its overall appearance appears to be that of a vehicle designed to be used on the highway. As a truck, the vehicle is required to be equipped with seat belts as specified in Motor Vehicle Safety Standard No. 208, Occupant Crash Protection (49 CFR 571.208, copy enclosed). It is required also to conform to safety requirements specified in other safety standards and regulations. Copies of the standards can be obtained as described in the enclosed, "Where to obtain Motor Vehicle Safety Standards and Regulations". Our decision as to whether this vehicle is a motor vehicle is based only on that information which you have provided us. Other relevant factors which can be taken into consideration are set forth in the enclosed interpretation regarding mini-bikes. If you have further information which you believe we should also consider we will be glad to review it. ENCLS. |
|
ID: nht79-2.21OpenDATE: 08/31/79 FROM: AUTHOR UNAVAILABLE; F. Berndt; NHTSA TO: Halliburton Services TITLE: FMVSS INTERPRETATION TEXT: Mr. Ron Bechtel Halliburton Services Drawer 1431 Duncan, Oklahoma 73533 Dear Mr. Bechtel: This is in response to your letter of May 1, 1979, requesting an interpretation of the definition of "incomplete vehicle" contained in Federal Motor Vehicle Safety Standard No. 115, and in confirmation of your subsequent telephone conversations with Mr. Schwartz of my office. The term "incomplete vehicle" is defined in S3 of the standard to mean "an assemblage consisting, as a minimum, of frame and chassis structure, power train, steering system, suspension system, and braking system, to the extent that those systems are to be part of the completed vehicle, that requires further manufacturing operations, other than the addition of readily attachable components, such as mirrors or tire and rim assemblies, or minor finishing operations such as painting, to become a completed trailer." You are correct in saying that most of the components listed in the definition are not meant to be part of a trailer. Consequently, an incomplete trailer would consist of only those components, such as a frame, listed in the definition which are meant to be part of the completed trailer. The outfitting of an incomplete trailer for a specific purpose would not be sufficient to make Halliburton Services responsible for assigning the vehicle identification number. Sincerely, Frank Berndt Chief Counsel (405) 251-3565 May 1, 1979 RB-90-79 Office of Chief Council National Highway Traffic Safety Administration 400 7th Street, S.W. Washington, D.C. 20590 Dear Sir: VIN Standards I would like to request an interpretation as to the definition of an "incomplete vehicle" in regard to trailers. The definition as contained in S571.115(s)(3) is only applicable to powered vehicles as the stated minimum requirements are not relative to trailers. Very truly yours, Ron Bechtel RB:im |
|
ID: nht81-2.50OpenDATE: 07/22/81 FROM: AUTHOR UNAVAILABLE; F. Berndt; NHTSA TO: British Standards Institution TITLE: FMVSS INTERPRETATION TEXT: This responds to your letter of June 8, 1981, concerning Standard No. 209, Seat Belt Assemblies. You are correct that my letter of June 1, 1981, on the abrasion test procedure of the standard should have referred to section 5.1(d), instead of to section 5.2(d). You also suggested that in the process of clarifying the standard's abrasion requirements, the agency should consider possible modifications to sections 4.2(e) and (f) of the standard. In the process of reviewing the abrasion test requirements, the agency will also examine those other sections to determine what changes should be made. Finally, you raised the issue of whether the standard, as with other national and international standards, should have a requirement that conditioned webbing must retain a certain percentage of its unconditioned strength and must also meet the minimum strength requirement for unconditioned webbing. The agency is not aware of any data indicating that our current conditioned strength requirements are insufficient. Sincerely, ATTACH. JUNE 8, 1981 F Berndt -- U.S. Department Transportation, National Highway Traffic Administration Dear Mr Berndt Many thanks for your letter dated 1 June 1981 regarding abrasion testing to FMVSS 209. However, should Section 5.2 (d), when it occurs, read 5.1 (d)? I understand your reasoning for the clarification, however, should this be extended to cover Sections 4.2 (e) and 4.2 (f)? In most of the National and International specifications which we test to the strength after conditioning must be above a certain percentage of its unconditioned strength and also above the minimum required strength of the webbing. You are permitting the use of webbing that might, after abrasion, fall below your minimum strength requirement. Do you have any comments on this? I look forward to receiving a prompt reply to the first paragraph. Yours sincerely J E BINGHAM -- SENIOR TEST ENGINEER, MOTOR VEHICLE SAFETY COMPONENTS SECTION, BRITISH STANDARDS INSTITUTION |
|
ID: nht88-3.94OpenTYPE: INTERPRETATION-NHTSA DATE: 11/03/88 EST FROM: ERIKA Z. JONES -- CHIEF COUNSEL NHTSA TO: RICHARD W. WARD -- V. P; K-D LAMP COMPANY TITLE: NONE ATTACHMT: LETTER DATED SEPTEMBER 14, 1988 TO ERIKA Z. JONES, NHTSA ADMIN., FROM RICHARD W. WARD, V.P., K-D LAMP CO.; OCC 2555 TEXT: This is in reply to your letter of September 14, 1988, asking for a clarification of Federal requirements for the minimum lens area for turn signal lamps and stop lamps. The understanding expressed in your letter is correct. The SAE materials for turn signal lamps and stop lamps for wide vehicles incorporated by reference in Table I apply to original equipment on vehicles currently being manufactured, and to equipment i ntended to replace such original equipment. These standards were expressly incorporated to supersede earlier versions of SAE standards for turn signal lamps and stop lamps. However, in recognition that original equipment lamps made to earlier SAE speci fications might not be compatible with the electrical systems of vehicles designed to conform to later SAE specifications, the agency adopted paragraphs S4.1.1.6 and 4.1.1.7, allowing the continued manufacture for replacement purposes only, of turn signa l lamps and stop lamps designed to conform to earlier specifications. Both sections incorporate in their text portions of the earlier SAE standards. Because the earlier specification for turn signal lamps, J588d, required an effective projected luminou s area not less than 12 square inches for turn signal lamps on wide vehicles, this requirement is also specified in S4.1.1.7 for replacement lamps manufactured in conformance with J588d. In short, your interpretation is correct with respect to turn signal lamps manufactured for installation on vehicles whose overall width is 80 inches or more. Single compartment turn signal lamps designed to conform to SAE J588e need meet only a minimum luminous lens area of 8 square inches. But if a turn signal lamp is manufactured to replace a turn signal lamp that was designed to conform to SAE J588d, its minimum luminous lens area is 12 square inches. I hope this clarifies the matter for your customer. |
Request an Interpretation
You may email your request to Interpretations.NHTSA@dot.gov or send your request in hard copy to:
The Chief Counsel
National Highway Traffic Safety Administration, W41-326
U.S. Department of Transportation
1200 New Jersey Avenue SE
Washington, DC 20590
If you want to talk to someone at NHTSA about what a request for interpretation should include, call the Office of the Chief Counsel at 202-366-2992.
Please note that NHTSA’s response will be made available in this online database, and that the incoming interpretation request may also be made publicly available.