NHTSA'S RESEARCH & RULEMAKING ACTIVITIES ON CHILD PASSENGER SAFETY

Cristina Echemendia, NHTSA

Government Industry Meeting 2015

Washington, D.C.

January 22, 2015

This is a U.S. Government work and may be copied and distributed without permission.

NHTSA's Activities on **Child Passenger Safety**

Notice of Proposed Rulemaking (NPRM) for improving the usability of child restraint anchorages.

- A. Improve Lower Anchor Usability
- B. Improve Tether Anchorage Usability
- C. Improve Conspicuity and Identification of Anchorages and CRS Connectors
- D. Request for comment

II. FMVSS No. 213 Upgrade – Research

A. Standard Seat Assembly

I. NPRM for improving the usability of child restraint anchorages.

Publication Date: January 23, 2015

Docket No. NHTSA-2014-0123

Notice of Proposed Rulemaking

Goal

- Improve the ease of use of child restraint anchorage systems.
- Standardize features of the child restraint anchorage systems to create more effective education messaging.

I. NPRM Proposal Overview A. Improve Lower Anchor Usability

Issue: Lower Anchors are difficult for CRS installation

Examples:

- Stiff leather around anchor
- Anchors deep into seat bight

Stiff cushion around anchor

Small opening

Hard plastic near anchor

I. NPRM Proposal Overview A. Improve Lower Anchor Usability

Proposal to Improve Lower Anchor Usability

Requirements for clearance angle (> 54 deg), attachment force (<40 lb) and anchor depth (< 2 cm) into FMVSS No. 225.

Requirements based on UMTRI 2012 LATCH Usability Study sponsored by IIHS

Clearance Angle

Angiecube

Attachment Force

Anchor Depth

I. NPRM Proposal Overview

B. Improve Tether Anchorage Usability

<u>Issue: Varied Tether Anchor Hardware, Difficult to Find</u>
<u>Anchors & Difficult to Tighten Tether</u>

Varied types of anchor — hardware

Hidden anchor

Anchor under carpet or plastic

Can't tighten tether

I. NPRM Proposal Overview B. Improve Tether Anchorage Usability

Proposal to Improve Tether Anchorage Usability

- a. Limit the Zone. Disallow tether anchorages from being placed deep under the seat.
- **b.** Anchorage Must Be Accessible. Require tether anchorages be accessible without the need to remove carpet or other vehicle components.
- c. Standardized Configuration. Standardize the tether anchorage to be a "rigid bar of any cross section shape."
- d. Clearance Around the Tether Anchorage*. Require a 165 mm (6.5 in) minimum distance from a tether anchorage to a reference point on the vehicle

^{*} Proposal includes amending <u>FMVSS No. 213</u> to require that the tether hardware assembly must be no longer than 165 mm (6.5 in).

I. NPRM Proposal Overview

C. Conspicuity and Identification of Anchorages and CRS Connectors

<u>Issue: Inconsistent marking of lower anchors</u>

Visible lower anchor, marked lower anchor with fabric slit, imprint of anchor mark and anchor hidden in seat bight, anchor behind door, flap/cutout for lower anchor.

Issue: Confusion identifying tether anchors

I. NPRM Proposal Overview C. Conspicuity and Identification of Anchorages and CRS Connectors

Proposal to Improve Conspicuity and Identification of Anchorages and CRS Connectors

- a. Proposed ISO markings near all lower anchorages & tether anchorages
- b. Proposed ISO markings on CRS lower anchor attachments & tether hooks

I. NPRM Proposal Overview D. Request for Comments

A. Additional Child Restraint Anchorages in Rear Seating Positions

- Require lower anchors and tether anchor in center seating position
- b. Require lower anchors and/or tether anchors in the third row
- c. Remove exclusions of convertibles from requiring tether anchors and of vehicles with transmission interference from requiring lower anchors.

B. <u>Standardized Terminology for Written Instructions in User's</u> Manuals

Require use of the following terms: *lower anchor(s), tether anchor, lower anchor attachments, tether, lower anchor connector, lower anchor strap, tether hook,* and *tether strap.*

C. Recommendation for Tether Anchor Use

Instruct to <u>always</u> attach the tether when restraining a child in a forward-facing CRS equipped with an internal harness.

II. FMVSS No. 213 Upgrade – Research

II. FMVSS No. 213 Upgrade - Research

NHTSA is considering upgrades to FMVSS No. 213 standard seat assembly and test parameters that better represent current vehicle fleet and real world conditions.

Upgrades of the standard seat assembly include:
☐ Seat cushion stiffness,
☐ Seat geometry,
☐ Seat belt assembly (3 pt vs. 2pt), and
☐ Anchorage locations (seat belt and child restraint anchorages)
Upgrades of the test parameters include:*
Crash pulse and test velocity,
☐ Excursion limits, and
☐ Others
* Test parameter upgrades are not discussed in this presentation

Seat Cushion Foam Stiffness

- Prototype Foam Specifications
 - ☐ Density 47 kg/m3 (2.9 pcf) ± 10%
 - \Box 50% IFD 440 N \pm 10%
 - \Box 50% CFD 6.6 pcf \pm 10%
- > Performed dynamic stiffness tests
 - □ Dropping an arm with a 6 inch diameter impactor at target speed of 3 mps
 - ☐ 11 vehicles
 - □ Different foams including the ECE R44, NPACS, FMVSS No. 213 and prototype foam.

Prototype seat cushion foam stiffness (dynamic stiffness test) representative of the vehicle fleet

Bench Geometry Measurements

- The agency surveyed vehicles in the fleet to compile data on the rear seat environment¹
 - Measurements of 43 individual rear seating positions in 24 MY 2010 vehicles including: seat back angle, height cushion thickness, seat width measurements, and seat belt and child restraint anchorage locations.

[1] Aram, M.L., Rockwell, T. "Vehicle Rear Seat Study" Technical Report July 2012

- Preliminary Drawings of the standard seat assembly will be available at Docket No. NHTSA-2013-0055
- Drawings are subject to change prior to NPRM

Bench Geometry Characteristics

	Fleet	213	ECE	213 Modified (preliminary)
Seat Back Angle	20 ± 4°	20°	20°	20°
Seat Pan Angle	13 ± 4°	15°	15°	15°
Seat Back Thickness (mm)	76 ± 29	152.4	70	50.8
Seat Pan Thickness (mm)	90 ± 40	152.4	140	101.6
Seat Pan Depth/Length (mm)	406 ± 38	416	438	400
Seat Back Height (mm) - without head restraint	578 ± 60	517	432	504

Subject to change prior to NPRM

Seat Belt Anchorage Location

Average Child **Restraint Anchorage Locations**

Subject to change prior to NPRM

Questions?

Contact information:

cristina.echemendia@dot.gov