RESEARCH & EVALUATION
Vehicle Safety Research
Vehicle Safety
The Office of Vehicle Safety Research and supports U.S. DOT’s and NHTSA’s safety goals by conducting research and safety testing of motor vehicles and motor vehicle equipment.
NHTSA’s recently published vehicle safety reports are listed chronologically below.
| Title | Report |
|---|---|
Technical Evaluation Of the TRL Pedestrian Upper LegformThe upper legform impactor was introduced by Transport Research Laboratory (TRL) to address injuries to the upper leg, pelvis, and hip of a pedestrian when struck by a vehicle. It is new to NHTSA and was evaluated at its Vehicle Research and Test Center. There are two objectives of this study. Since the foam in the TRL upper legform impactor has a history of sensitivity to humidity, the first evaluates the impactor under different humidity conditions. Vehicle tests were also carried out to see if the upper legform sensitivity to humidity carries over to vehicle tests. The second objective evaluated sensitivity to vehicle bumper design, repeatability, reproducibility, durability, and biofidelity. |
DOT HS 812 659 |
Traffic Jam Assist Test Development ConsiderationsThis report summarizes three preliminary Traffic Jam Assist (TJA) test scenarios, discusses test results of three commercially available vehicles equipped with TJA, assesses real-world scenarios, and considers performance capabilities of the TJA systems presently available. The first scenario involved a lead vehicle accelerating to the desired speed and braking to a stop. In the second scenario, a lead vehicle abruptly changed lanes to suddenly reveal a stopped vehicle. The final scenario used a cut-in and deceleration maneuver performed at close range to the subject vehicle. The three vehicles tested were a 2017 Mercedes E300, a 2017 Tesla Model S 90D, and a 2017 BMW 540i xDrive. |
DOT HS 812 757 |
Rear Amber Turn Signal Lamps Confirmation Test - Example MeasurementsThis report summarizes an evaluated draft test procedure for confirming amber rear turn signal lamp color. It adapts existing test procedures from FMVSS No. 108, Lamps, reflective devices, and associated equipment, to accommodate testing the lamps as installed on the vehicle. Four vehicles were tested. Overall, the test procedure was found to be easy to carry out and effective in determining turn signal lamp color. |
DOT HS 812 740 |
Ford Safety Performance of Rechargeable Energy Storage SystemsThis study of rechargeable energy storage systems (RESS) in electrified vehicles defines lithium ion battery performance-based safety metrics, safety performance test procedures, and metrics conducted at the vehicle level. Research involved identification, review, and assessment of existing test procedures to determine adequacy and applicability to this research. To define priority failure events in the RESS, a fault tree analysis (FTA) was conducted that lead to the identification of crush, overcharge and short circuits as principle fault mechanisms, and provided understanding of the key faults within those failure modes. The testing included data acquisition for voltage, current, and temperature supported with photographic and video files. The results are reproducible and repeatable test procedures indicating threshold levels that should not be exceeded in a vehicle fault event. |
DOT HS 812 756 |
Front Seat Modeling in Rear Impact Crashes: Development of a Detailed Finite-Element Model for Seat Back Strength RequirementsNHTSA contracted EDAG, Inc., to re-examine feasibility of increasing the seat back strength by developing a detailed finite-element model of a current vehicle front seat design that can be used with existing biofidelic rear impact dummies to study seat performance in rear impact crashes. Results are the finite-element models of a 2014 Honda Accord mid-size sedan representing typical front seats. Two front seat models were developed using LS-DYNA simulation code, a manually operated seat and a power-operated seat, both capable of simulating occupant kinematics and injury performance measures in rear impact and capable of responding to incremental impulses spanning from 17 km/hr up to 40 km/hr. |
DOT HS 812 737 |
DC Charging Safety Evaluation Procedure Development, Validation, and Assessment; and Preliminary Draft AC Charging Evaluation ProcedureThis report describes and validates a holistic collection of test procedures assessing safety hazards to electric vehicles while being charged. If not properly protected and controlled, vehicle charging using either AC or DC current can introduce hazards ranging from high-voltage exposure to the vehicle or damage to the battery. The tests procedures in this report have been independently developed using commonly accepted single-point failure modes and hazards identified in 24 separate FMEAs related to electric vehicle applications of Li-ion battery technology and the system’s ability to effectively detect and mitigate safety-relevant occurrences during charging. |
DOT HS 812 754 |
Pedestrian Protection – Assessment of the U.S. Vehicle FleetThis study evaluated pedestrian protection in the U.S. vehicle fleet using established Euro NCAP pedestrian test procedures including lower legform and upper legform impacts to the front end of the vehicle and headform impacts to the hood and windshield. In general, global vehicles (models that include a U.S. variant and a European variant of the same vehicle) offer more pedestrian safety than vehicles marketed primarily in the U.S. The second objective assessed equivalency of pedestrian protection in U.S. versus European variants of the same vehicle model. U.S. variants performed worse than European variants in the lower legform assessment, but no worse than (and perhaps slightly better than) non-global “passenger cars.” In upper legform tests, the global “passenger cars” perform very well, with U.S. and European variants performing equally as well. |
DOT HS 812 723 |
Small Female/Older Occupant Thoracic Biofidelity Corridor DevelopmentThe objective of this study was to develop biofidelity corridors for the small female thorax. Small female specimens were tested in a frontal crash configuration using a simplified sled buck. The resulting biofidelity corridors are being used to evaluate the THOR 5th small female ATD. The THOR 5th ATD was tested in the same condition as the post mortem human surrogates. |
DOT HS 812 743 |
Evaluation of the Large Omni-Directional Child Anthropomorphic Test DeviceIn 2016 a new pediatric anthropomorphic test device (ATD) – the large omni-directional child (LODC) was developed. The LODC is designed to have anthropometry representative of a seated 9- to 11-year-old child and a flexible thoracic spine, instrumented abdomen, and realistic pelvis geometry to address the biofidelity and injury risk measurement limitations with the Hybrid III 10-year-old ATD (HIII-10C). This study presents an evaluation of the latest versions of the LODC (Rev4 and Rev5) that have increased biofidelity and durability and are more user-friendly. In addition to assessing biofidelity, durability, and repeatability of the LODC, reproducibility was also evaluated for the first time using multiple LODC ATDs. |
DOT HS 812 755 |
Revised THOR 50th Percentile Male Dummy Seating ProcedureNHTSA developed a seating procedure for the THOR 50th percentile male dummy (THOR-50M). The original was released with a December 2015 Request for Comments (RFC), and some updates were presented at a public meeting at VRTC in August 2016. This report discusses the changes to the seating procedure since the original that were reflected updates to the THOR-50M, additional experience using the procedure, and comments received. Some revisions were minor wording changes to better clarify the steps of the procedure. The more significant revisions to the procedure are discussed in this report and include heel point definitions for different accelerator pedal types, seat fore/aft position, H-point tolerances, and final head angle. |
DOT HS 812 746 |